FORMULA
Basic Derivative Rules
C.n. 1:1~111 :\\.ulliph~ Rule !!_lc/(x)j- cf'(.,·)
d<
Po'.\\'t..1Ruh~. ~a(..,,·\\) - nx"·1
Suin Ruk ~lf(x)• g(x)I - j'(x)-• g'(x)
ax
Diffmncr Rnic ~[f(x)-g(x)I-
aY
f {x)- g'(x)
Prorluct Ruic 4a-x[/(x)~(x)]~
/(x)o'("x')- .v.(,x)/'(x)
Quc·1iei1<Rule --=t/-(fx) - g(.<)/'(.<)- f(x)g'(x)
a.xL g(.t) c
[!'(X)j'
-j; Ch,in Rulo· f(g(x)) - j te(x))e'(x)
Derivative Rules for Exponential Functions
-d ( e·• ) = e·•
dx
.!!_ (a' ) = a' In a
dx
.!!_ (e ''' >) = e' <'>g '( x )
dx
.!!_ ( a ' <'>) = 1n ( a ) a '<'> g '( x)
dx
Derivative Rules for Logarithmic Functions
-(dlnx)=-,x>O
dx
-ldn(g(x))
dx
I
x
= -u"-·'-( x)
g(x)
-(dlog
dx
0 x)=
--,xI
x In a
>0
d
-d
x
(log
0
g(x))=
0u '(x)
-
g(x)ln a
Basic Integration Rules
I. f a1fr=ax+C
• x•·•
2. x dr=-+C,
f n+ I
II~ -I
;dx C f 3.
= In 1-+'i
4. fe'd-r=e·'+C
5. fa'cfr=~+C
Ina
6. flnxdx=xlnx-x+C
Integration by Substitution
The following are the 5 steps for using the
integration by substitution metthod:
• Step 1: Choose a new variable u
• Step 2: Determine the value dx
• Step 3: Make the substitution
• Step 4: Integrate resulting integral
• Step 5: Return to the initial variable x
Integration by Parts
The formula for the method of integration by
parts is:
.ludv= 11.• v-_/vdu
There are three steps how to use this formula:
• Step 1: identify u and dv
• Step 2: compute u and du
• Step 3: Use the integration by parts
formula
Unconstrained
optimization:
Univariate
functions
The following are the steps for finding a solution
to an unconstrained optimization problem:
• Step 1: Find the critical value(s), such
that:
f '(a) = 0
• Step 2: Evaluate for relative maxima or
minima
o If f "(a) > 0 -1 minima
o If f "(a) > 0 -1 maxima
Unconstrained optimization: Multivariate
functions
The following are the steps for finding a
solution to an unconstrained optimization
problem:
Constrained Optimization
The following are the steps for finding a solution
to a constrained optimization problem using the
Langrage technique:
• Step 1: Set up the Langrage equation
Relarive 111axim11111Relarive 111ini11111111
I. f_,_.f=, ()
1.!,.,J;=0
2. f,_,.f,-v< Q
2. f,.,,f,.,. > 0
3. fu ·/:._>,.(f,_..f 3. f,.,·/,._>,.(f,,)2
• Step 2: Derive the First Order Equations
• Step 3: Solve the First Order Equations
• Step 4: Estimate the Langrage Multiplier