QUESTION 4:
[20 MARKS]
4.1 Evaluate the [x, Px] commutators and state the consequences of the results.
(5)
4.2 What are Pauli spin matrices and what value of spin they correspond?
(5)
4.3 Evaluate the matrix of Lxfor/= 1
QUESTION 5:
10)
[20 MARKS]
5.1 Show that in the usual stationary state perturbation theory, if the Hamiltonian (10)
can be written H =Ho + H' with Ho(/)o=Eo(/)o,then the correction ~Eois
~Eo::: < <DoIH' I<Do>
5.2 Evaluate the eigenfunction and the energy of the state n = 1 for a quantum system
with the
Potential energy V (x) =
{ -0.5x
0.5x
_j,_<x<O
2
O<x<½
using first order perturbation theory and the infinite potential well as the
unperturbed
system. Given
'¥
0
1
=
'1G-C:cos(L.l!..x)
Useful Standard Integral
_,,,
"'sy 11 e-y 2 dy=-;
-00
n
n even
1OC>e~,'e-P'dy=( : J½e"p'2
O' · n odd
Spherical harmonics
I
Y/"(0' tp) =[(2/ + 1) (I - m)! ]2 eimq,P/"(x)
4n (l + m)!
Associated Legendre polynomials:
P/" (x)
=
(-1
)1(I
-
,
x,-
)111(1,d
--
)1+111
(1- x 2 ) 1 ,
where
x = cos 0
2 /! dx
Radial eigenfunctions of hydrogen-like atoms:
2ZJ%[ ]¾(2Jz' R,,,()r =( -
a0 n
(n[-/-1)!
2n (n + /)!
]3
- r e-:O;·,L112_,_11+(p1) , where
a0 n
'° L21+1( )- n-/-1 (-l)k.
[cn+ /)'].2 p k
d --r2Z
n-t-i p - Lk=., o
(n -/-1-k)'(2/ . . + 1+ k) .1k .1' an p- aon
END OF QUESTION PAPER
3