AEM702S- APPLIED ECONOMETRICS - JAN 2020pdf


AEM702S- APPLIED ECONOMETRICS - JAN 2020pdf



1 Page 1

▲back to top


NAMIBIA UNIVERSITY
OF SCIENCE AND TECHNOLOGY
FACULTY OF HEALTH AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS AND STATISTICS
QUALIFICATION: BACHELOR OF SCIENCE IN APPLIED MATHEMATICS AND STATISTICS
QUALIFICATION CODE: 07BAMS
NQF LEVEL: 7
COURSE NAME: APPLIED ECONOMETRICS
MODELLING
SESSION: JANUARY 2020
DURATION: 3 HOURS
COURSE CODE: AEM702S
PAPER: THEORY
MARKS: 100
SECOND OPPORTUNITY/SUPPLEMENTARY EXAMINATION
EXAMINER Mr SP KASHIHALWA
MODERATOR; | PROF P. NJUHO
INSTRUCTIONS
Answer ALL the questions in the booklet provided.
2. Show clearly all the steps used in the calculations.
All written work must be done in blue or black ink and sketches must
be done in pencil.
4. You may not start to read the questions printed on the subsequent
pages of this question paper until instructed that you may do so by
the invigilator
PERMISSIBLE MATERIALS
1. Non-programmable calculator without a cover.
2. Attached statistical tables (t-table, d-table and F-table).
THIS QUESTION PAPER CONSISTS OF 4 PAGES (Including this front page) and 3 attachments.
1

2 Page 2

▲back to top


QUESTION 1 [20 MARKS]
1.1 Explain the following terminologies as they are applied in Econometrics
1.1.1 Classical econometrics
[2]
1.1.2 Autocorrelation
[2]
1.1.3 Autoregressive model
[2]
1.1.4 Indirect Least Square
[2]
1.1.5 Reduced form equation
[2]
1.2 Suppose the Lorenzo curve is given by the following function:
L(x) = In(« + 1)
Compute the Gini-Coefficient
[10]
QUESTION 2 [28 MARKS]
An econometrician used a multi variable regression model: Y = By + Bi INF + B2CO +
B3i + ByPMIm + BsPMIs + u4;, to predict the GDP growth rate in Namibia using key
macroeconomic indicators such as inflation
(INF), Crude Oil(CO), interest rate(i), Manufacturing (PMIm)and Services (PMIs).
The E-VIEWS output is given below.
Variable
Coefficient |
Inflation
-0.57278
Crude oil
0.02914
Interest rate
0.42451
PMI Manufacturing | -0.57157
PMI Services
0.07338
Intercept
31.35076
Std.error
0.099731
0.478308
0.80499
0.20544
0.08669
12641.63
t-statistics
R-square
DW
n
0.988909
0.498544
14
2.1
Find the t-values for the model
[3]
2.2 Suppose the output above is for a linear-log model, interpret the coefficient for crude oil
[2]
2.3 Interpret the R-square
[2]
2.4 Investigate if the indicator crude oil is significant at 5% level
[4]
2.5 Suppose we suspect the presence of autocorrelation in the above model
2.5.1 What could be the cause of autocorrelation
[4]
2.5.2 State the important assumptions underlying the DW statistic
[5]
2.5.3 Validate or invalidate the statement in 2.5(assuming n = 15)
[6]
2.5.4 If the statement in 2.5 is true, what will you do
[2]

3 Page 3

▲back to top


QUESTION 3 [18 MARKS]
3.1 An econometrician wants to estimate the effect of FDI(X) on GDP(Y) using the following
model 1: ¥ = By + BoX + uj.
3.1.1 Find the elasticity of the model
[4]
3.2 Suppose the researcher uses the following model 2 given below, instead of the above
model 1.
Y = ay + 2X1 + 3X2 + Up;
3.2.1 Identify the specification error in model 2 if model 1 is the truth model.
3.2.2 State the consequences of the specification error identified in 3.2.1.
[4]
3.2.3 Find the w2;, in model 2.
[2]
3.2.4 If the variance of uz; in model 2 is variable. What will be the consequences?
[6]
QUESTION 4 [34 MARKS]
4.1
The Keynesian model of income determination can be summarized by two simple
mathematical equations:
National Income identity: ¥, = C,; + I;
Consumption function: C; = Bo + BiY, tu, ; O< fy <1,
where Y; is income, C, is consumption, and /, is private investment.
4.1.1 Derive the reduced form equation for income.
[3]
4.1.2 Derive the reduced form equation for consumption.
[3]
4.1.3 Explain why government should pass policies that discourage C;.
[2]
4.1.4 Briefly describe the features of 2SLS.
[5]

4 Page 4

▲back to top


4.2
Regression of per capita personal expenditure (PPCE) on per capita disposable income
(PPDI) and lagged PPCE gave the following results:
PPCE, = —1242.169 + 0.6033PPDI, + 0.4106PPCE;_;
se = (402.5784) (0.15021)
(0.1546)
d=1.0056 ,durbin h=5.119
|f we assume that this model resulted from a Koyck-type transformation
4.2.1 Find the Koyck model: median lag.
[3]
4.2.2 Find the Koyck model: mean lag.
[3]
4.2.3. Name the features of the Koyck transformation.
[4]
4.2.4 Explain why d statistic may not be used to detect a (first-order) serial correlation in
autoregressive models.
[2]
4.3 If we assume that this model resulted from Almon-type transformation
4.3.1 Estimate the original coefficient of PPD and PPCE,.
[4]
4.3.2 Name and define the method used to estimate the Koyck and adaptive
expectations models consistently.
[3]
4.3.3. Name any 2 practical problems we must resolve, before we apply the Almon
technique.
[2]
END

5 Page 5

▲back to top


t Table
cum. prob
one-tail
two-tails
df
1
2
3
4
5
6
a
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
40
60
80
100
1000
Zz
t 50
0.50
1.00
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0%
t 75
0.25
0.50
1.000
0.816
0.765
0.741
0.727
0.718
0.711
0.706
0.703
0.700
0.697
0.695
0.694
0.692
0.691
0.690
0.689
0.688
0.688
0.687
0.686
0.686
0.685
0.685
0.684
0.684
0.684
0.683
0.683
0.683
0.681
0.679
0.678
0.677
0.675
0.674
50%
t 80
0.20
0.40
1.376
1.061
0.978
0.941
0.920
0.906
0.896
0.889
0.883
0.879
0.876
0.873
0.870
0.868
0.866
0.865
0.863
0.862
0.861
0.860
0.859
0.858
0.858
0.857
0.856
0.856
0.855
0.855
0.854
0.854
0.851
0.848
0.846
0.845
0.842
0.842
60%
t gs
0.15
0.30
1.963
1.386
1.250
1.190
1.156
1.134
1.119
1.108
1.100
1.093
1.088
1.083
1.079
1.076
1.074
1.071
1.069
1.067
1.066
1.064
1.063
1.061
1.060
1.059
1.058
1.058
1.057
1.056
1.055
1.055
1.050
1.045
1.043
1.042
1.037
1.036
70%
t 90
0.10
t 95
0.05
t 975
0.025
0.20
0.10
0.05
3.078
1.886
1.638
1.533
1.476
1.440
1.415
1.397
1.383
1.372
1.363
1.356
1.350
1.345
1.341
1.337
1.333
1.330
1.328
1.325
1.323
1.321
1.319
1.318
1.316
4.315
1.314
1.313
1.311
1.310
1.303
1.296
1.292
1.290
1.282
6.314
2.920
2.353
2.132
2.015
1.943
1.895
1.860
1.833
1.812
1.796
1.782
1.771
1.761
1.753
1.746
1.740
1.734
1.729
1.725
1.721
1.717
1.714
1.711
1.708
1.706
1.703
1.701
1.699
1.697
1.684
1.671
1.664
1.660
1.646
12.71
4.303
3.182
2.776
2.571
2.447
2.365
2.306
2.262
2.228
2.201
2.179
2.160
2.145
2.131
2.120
2.110
2.101
2.093
2.086
2.080
2.074
2.069
2.064
2.060
2.056
2.052
2.048
2.045
2.042
2.021
2.000
1.990
1.984
1.962
1.282
80%
1.645
90%
1.960
95%
Confidence Level
t 99
0.01
0.02
31.82
6.965
4.541
3.747
3.365
3.143
2.998
2.896
2.821
2.764
2.718
2.681
2.650
2.624
2.602
2.583
2.567
2.552
2.539
2.528
2.518
2.508
2.500
2.492
2.485
2.479
2.473
2.467
2.462
2.457
2.423
2.390
2.374
2.364
2.330
2.326
98%
t 995
0.005
0.01
t o99
0.001
0.002
t 9995
0.0005
0.001
63.66
9.925
5.841
4.604
4.032
3.707
3.499
3.355
3.250
3.169
3.106
3.055
3.012
2.977
2.947
2.921
2.898
2.878
2.861
2.845
2.831
2.819
2.807
2.797
2.787
2.779
2.771
2.763
2.756
2.750
2.704
2.660
2.639
2.626
2.581
2.576
99%
318.31
22.327
10.215
7.173
5.893
5.208
4.785
4.501
4.297
4.144
4.025
3.930
3.852
3.787
3.733
3.686
3.646
3.610
3.579
3.552
3.527
3.505
3.485
3.467
3.450
3.435
3.421
3.408
3.396
3.385
3.307
3.232
3.195
3.174
3.098
3.090
99.8%
636.62
31.599
12.924
8.610
6.869
5.959
5.408
5.041
4.781
4.587
4.437
4.318
4.221
4.140
4.073
4.015
3.965
3.922
3.883
3.850
3.819
3.792
3.768
3.745
3.725
3.707
3.690
3.674
3.659
3.646
3.551
3.460
3.416
3.390
3.300
3.291
99.9%
t-table.xls 7/14/2007

6 Page 6

▲back to top


T-14
Tables
p
1
2
.100
3.46
3.11
.050
5.32
4.46
8
.025
7.57
6.06
.010
11.26
8.65
.001
25.41
18.49
.100
.050
9
.025
.010
.001
.100
.050
10
.025
.010
001
3.36
5.12
7.21
10.56
22.86
3.29
4.96
6.94
10.04
21.04
3.01
4.26
5.71
8.02
16.39
2.92
4.10
5.46
7.56
14.91
.100
3.23
2.86
.050
4.84
3.98
Le
11
.025
6.72
5.26
£
.010
9.65
7.21
&
.001
19.69
13.81
&
2
-100
3.18
2.81
s
.050
4.75
3.89
y
12
.025
6:55
5.10
‘a
-010
9.33
6.93
:
.001
18.64
12.97
3
.100
v
-050
as
13
.025
°
.010
2
.001
oh
A
.100
.050
14
.025
.010
.001
3.14
4.67
6.41
9.07
17.82
3.10
4.60
6.30
8.86
17.14
2.76
3.81
4.97
6.70
12.31
2.73
3.74
4.86
6.51
11.78
.100
-050
15
-025
.010
001
3.07
4.54
6.20
8.68
16.59
2.70
3.68
4.77
6.36
11.34
.100
.050
16
.025
.010
.001
3.05
4.49
6.12
8.53
16.12
2.67
3.63
4.69
6.23
10.97
.100
.050
17
.025
.010
.001
3.03
4.45
6.04
8.40
15.72
2.64
3.59
4.62
6.11
10.66
Degrees of freedom in the numerator
3
4
5
6
7
2.92
4.07
5.42
7.59
15.83
2.81
3.86
5.08
6.99
13.90
2.73
3.71
4.83
6.55
12.55
2.66
3.59
4.63
6.22
11.56
2.61
3.49
4.47
5.95
10.80
2.56
3.41
4.35
5.74
10.21
2.52
3.34
4.24
5.56
9.73
2.49
3.29
4.15
5.42
9.34
2.46
3.24
4.08
5.29
9.01
2.44
3.20
4.01
5.19
8.73
2.81
3.84
5.05
7.01
14.39
2.69
3.63
4.72
6.42
12.56
2.61
3.48
4.47
5.99
11.28
2.54
3.36
4.28
5.67
10.35
2.48
3.26
4.12
5.41
9.63
2.43
3.18
4.00
5.21
9.07
2.39
3.11
3.89
5.04
8.62
2.36
3.06
3.80
4.89
8.25
2.33
3.01
3.73
4.77
7.94
2.31
2.96
3.66
4.67
7.68
2.73
3.69
4.82
6.63
13.48
2.61
3.48
4.48
6.06
11.71
2.52
3.33
4.24
5.64
10.48
2.45
3.20
4.04
5.32
9.58
2.39
315
3.89
5.06
8.89
2.35
3.03
3.77
4.86
8.35
2.31
2.96
3.66
4.69
7.92
2.27
2.90
3.58
4.56
7.57
2.24
2.85
3.50
4.44
7.27
2.22
2.81
3.44
4.34
7.02
2.67
3.58
4.65
6.37
12.86
2.55
3.37
4.32
5.80
11.13
2.46
3:22
4.07
5.39
9.93
2.39
3.09
3.88
5.07
9.05
2.33
3.00
3.73
4.82
8.38
2.28
2.92
3.60
4.62
7.86
2.24
2.85
3.50
4.46
7.44
2.21
2.79
3.41
4.32
7.09
2.18
2.74
3.34
4.20
6.80
2.15
2.70
3.28
4.10
6.56
2.62
3.50
4.53
6.18
12.40
2.51
3.29
4.20
5.61
10.70
2.41
3.14
3.95
5.20
9.52
2.34
3.01
3.76
4.89
8.66
2.28
2.91
3.61
4.64
8.00
2.23
2.83
3.48
4.44
7.49
2.19
2.76
3.38
4.28
7.08
2.16
2.71
3.29
4.14
6.74
2.13
2.66
3.22
4.03
6.46
2.10
2.61
3.16
3.93
6.22
8
2.59
3.44
4.43
6.03
12.05
2.47
3.23
4.10
5.47
10.37
2.38
3.07
3.85
5.06
9.20
2.30
2.95
3.66
4.74
8.35
2.24
2.85
3.51
4.50
7.71
2.20
2.77
3.39
4.30
7.21
2.15
2.70
3.29
4.14
6.80
2.12
2.64
3.20
4.00
6.47
2.09
2,59
3.12
3.89
6.19
2.06
2.55
3.06
3.79
5.96
9
2.56
3.39
4.36
5.91
11.77
2.44
3.18
4.03
5.35
10.11
2.35
3.02
3.78
4.94
8.96
2.27
2.90
3.59
4.63
8.12
2.21
2.80
3.44
4.39
7.48
2.16
2.71
3.31
4.19
6.98
2.12
2.65
3.21
4.03
6.58
2.09
2.59
3.12
3.89
6.26
2.06
2.54
3.05
3.78
5.98
2.03
2.49
2.98
3.68
5.75

7 Page 7

▲back to top


€9
sejqel jenasneis vy xipuaddy