Mathematics for Agribusiness
MTA611S
FORMULA
Basic Derivative Rules
Coustaut R.uh=. ~(c)-0
c:x
ConSIJIII ~lulliple Rul, {[cf(x)[- cf'(x)
Sum Ruk ..:;..[/(x)-g(x)j-/Xx)-g'(x)
ax
l'ro,iuct Kuk ~a[xf(x)g(x)[
J(x) g'(x)- g(x)f'(x)
Ch,in Ruic .!;.-/(e(x))- /Xe(x))eX~)
"'
Derivative Rules for Exponential Functions
-d ( e·. ) = e·•
dx
-d(') a = a 'I n a
dx
!!._(er<•>)= er<rlg '(x)
dx
_::._(at<•>)= ln(a)a r<•>g '(x)
dx
Derivative Rules for Logarithmic Functions
-(dIn x) = -I, x > 0
dx
x
-ldn(g(x))
dx
= _uo_'·(_x-)
g (x)
-d(log
dx
-(dlog
dx
0 x)=
--,xl
x In a
>0
= 0 g(x))
0u
'(~)
•
g(x)lna
Basic Integration Rules
f I. adr=ax+C
;;+n•I
2. fxr.dx=
+c, 11;,,-l
1
3. J-!.d=rIn 1.,1C+
JX
4. e' dx = c•' + C
f 5. a'd,· = ~-+ C
Ina
6. Jlnx,fr=xlnx-x+C
Integration by Substitution
The following are the 5 steps for using the integration by
substitution metthod:
• Step 1: Choose a new variable u
• Step 2: Determine the value dx
• Step 3: Make the substitution
• Step 4: Integrate resulting integral
• Step 5: Return to the initial variable x
Integration by Parts
The formula for the method of integration by parts is:
.! ;·udv = u •v- vd11.
There are three steps how to use this formula:
• Step 1: identify u and dv
• Step 2: compute u and du
• Step 3: Use the integration by parts formula
Unconstrained optimization: Univariate functions
The following are the steps for finding a solution to an
unconstrained optimization problem:
• Step 1: Find the critical value(s), such that:
f '(a) = 0
• Step 2: Evaluate for relative maxima or minima
o If f "(a) > 0 minima
o If f "(a) > 0 maxima
Unconstrained optimization: Multivariate functions
The following are the steps for finding a solution to an
unconstrained optimization problem:
f'(a) = 0
f'(a) = 0
f'(a) > 0:
f'(a) < 0:
relative minimum at x = a
relative maximum at x = a
Comlilion
FOCs or ncccss.1ryconditions
SOCs or sufficient conditions
.\\Jinimum
/1 =h = 0
/11 > 0. hl 0, and
/11/12 > ((12>2
lnOcclion poinl
Maximum
Ji =h =0
/11 <0./!2 <0. and
/11.J}.2 > if1d
Constrained Optimization
The following are the steps for finding a solution to a
constrained optimization problem using the Langrage
technique:
• Step 1: Set up the Langrage equation
• Step 2: Derive the First Order Equations
• Step 3: Solve the First Order Equations
• Step 4: Estimate the Langrage Multiplier
/11 < 0. h.2 < 0.and/11 /i2 < \\/i2/ or
/11 < 0, h.2 < 0. anJ.fj 1,½2< Ui2) 2
Saddle poinl
/11 > 0. hi< 0, andjj 1,/~2 < Vi2) 2. or
/11 < 0. h! > 0. and Ji 1!12< 1Ji2)2
Inconclusive
First Opportunity Question Paper
Page 6 of 6
June 2024