'Mathematics for Agribusiness Management
MTA 61 IS
FORMULA
Basic Derivative Rules
Constant Rule. _![_(c)- 0
~\\"
Con~IJnt ~iullipt~Rule f[cf(:c)J- cf'(x)
~I Sum Ruic. j(x)• z(x)J- f Xx)·· g ·(x)
ctx
Dificrtncc Ruic· ~Jj(x)-
ax
s(x)J - f Xx) - e'(x)
Produ-t Ruk 4a-x[J(:r)g(x)j
/(x) g'(x)- g(x)f'(x)
Quc:i,-n1 Rule .'!../.(..,)j_ g(x)f'(x)- j(x)g '(.<)
J dx _ 2(x)
[g(x)]·
Chain Ruic· f(g(x)) - f \\'.e(x))e\\'.x)
r.,:
Derivative Rules for Exponential Functions
:"(e=)=e=
!!_(a')= a= In a
dx
.!!._(e'',i)= erCr>g '(x)
dx
!!.._(a'''l) = ln(a)a ,er> g '(x)
dx
Derivative Rules for Logarithmic Functions
-(dlnx)=-,x>O 1
dx
x
-ldn(g(x))
dx
= _"o_'·(_x)
g(x)
-d(log
dx
-(dlog
dx
0 x)=
--,xI
x In a
>0
g(x)) = g "(x· )
0
g(x)ln a
Basic Integration Rules
f I. alfr=ax+C
fn
x•·•
1. X lfr=--+C,
11+1
11#-I
3. f-!_{l\\=- In1-+'l C
fX
4. ,t' clx= e·' + C
5. a'dx=-+Ca'
f Ina
f 6. lnxclr=xlnx-x+C
Integration by Substitution
The following are the 5 steps for using the integration by
substitution metthod:
• Step 1: Choose a new variable u
• Step 2: Determine the value dx
• Step 3: Make the substitution
• Step 4: Integrate resulting integral
• Step 5: Return to the initial variable x
Integration by Parts
The formula for the method of integration by parts is:
.l .l = 1.tdv 'lL • v -
vd1.1.
There are three steps how to use this formula:
• Step 1: identify u and dv
• Step 2: compute u and du
• Step 3: Use the integration by parts formula
Unconstrained optimization: Univariate functions
The following are the steps for finding a solution to an
unconstrained optimization problem:
• Step 1: Find the critical value(s), such that:
t '(a) = o
• Step 2: Evaluate for relative maxima or minima
o If f "(a) > O-> minima
o If f "(a) > O-> maxima
·Unconstrained optimization: Multivariate functions
The following are the steps for finding a solution to an
unconstrained optimization problem:
f'(a) = 0
f'(a) = 0
f'(a)>O:
f'(a) < 0:
relative minimum at x = a
relative maximum at x = a
Conc/i1iv11
Minimum
FOCs or ncccssar.· co11Ji1ions
SOCs or sufficicni conditions
/1 =h = 0
Ji1 > 0. /~2 > 0. ::rnJ
/11/-22> ((12/
/1=h=0
/1 I < 0. /12 < 0. and
/11 J!2 > (fi111
lnncclion point
/11 < 0. /21 < 0, ond/i1,/~1 < if121 2 or
/11 < 0, /21 < 0, and/11 J!1 < (!'i2J2
SaJdlc poinl
/11 > 0. h1 < 0, and/11J12 < (fi1) 1• or
/1 I < o.h1 > ll, ;111dJI1/22 < Vi2) 2
lnconclusiV<.·
ConstrainedOptimization
The following are the steps for finding a solution to a
constrained optimization problem using the Langrage
technique:
• Step 1: Set up the Langrage equation
• Step 2: Derive the First Order Equations
• Step 3: Solve the First Order Equations
• Step 4: Estimate the Langrage Multiplier
Second Opportunity Question Paper
Page 6 of6
July 2024