Ln (Xt - µ)(Xt-h - µ)
Ph=Th = _t=_l _ n _____
_
I:(Xt - µ)2
t=l
'Yo= Var=~ f,(Xt
n t=l
n
µ = L Xt
t=l
- µ)2
Use the data below to evaluate the values of the estimates (¢ 1,<h,¢3 and a-;)
t 1 2 3 4 5 6 7 8 9 10
Xt
26
34 35 38 39
37 38
QUESTION FOUR - 18 MARKS
[22 mks]
Consider the ARMA(l,2) process Xt satisfying the equations Xt - 0.6Xt-l = Zt - 0.4Zt-l -
0.2zt_ 2 Where Zt ~ vVN(0, a-2 ) and the Zt : t = 1, 2, 3..., Tare uncorrelated.
(a) Determine if Xt is stationary
[4 mks]
(b) Determine if Xt is casual
[2 mks]
(c) Determine if Xt is invertible
[2 mks]
(d) Vhite the coefficients W1 of the MA( oo) representation of Xt
QUESTION FIVE - 20 MARKS
[10 mks]
(a) State the order of the following ARIMA(p,d,q) processes
[12 mks]
(i) Yi= 0.8Yt-1 +et+ 0.7et-l + 0.6et-2
(ii) Yi = Yi-1+ et - 0et-l
(iii) Yi= (1 + ef>)Yi--1ef>Yi+-2et
(iv) Yi = 5 + et - ½et-l - ¼et-2
(b) Verify that (max Pl = 0.5 nd min p1 = 0.5 for -oo < 0 < oo) for an MA(l) process:
Xt = E:t- 0c:t-l such that E:tare independent noise processes.
[8 mks]
3