FORMULA
Basic Derivative Rules
Con~1:u11Rule. ~(c)- 0
ax
Conmm
~!ultiplc Rule
~[c/(x)I-
de
cf"(x)
Sum Ruic- ~li(x)-g(x)I
ax
- /Xx)- g·(x)
P,orln,, Rnlr ~[f(r)g(r)J
ax
/(x)g'(x)-g(.,Jj'(r)
.!;- Ch.,in Ruic' ax /(g(x)) - f Xe(x))eXx)
Derivative Rules for Exponential Functions
!!_(e') = e'
dx
~(a')= a' In a
dx
~(e'<'>)
dx
= ·en'>g '(x)
~(a' 1n) = ln(a) a ,r,> g '( x)
dx
Derivative Rules for Logarithmic Functions
x) -,x -(dln
=I > 0
dx
x
-ldn(g(x))
dx
= -0" '( x)
-·-
g(x)
-dd(xlog.
x)= --,xI
x ln a
>0
- d ( lo o g ( X ) ) -_ ---"-g---'--'('--x--)
d x "• ·
g ( X) ln a
Basic Integration Rules
I. fa,fr=llx+C
2. fx"dx=;:·11:;,>e-l c.
f 3. ~cfr=lnJxl+C
f 4. e·' (b: = e' + C
5.
6.
a',fr=-+Cll'
f Ina
f lnxdx = xlnx-x+
C
Integration by Substitution
The following are the 5 steps for using the
integration by substitution metthod:
• Step 1: Choose a new variable u
• Step 2: Determine the value dx
• Step 3: Make the substitution
• Step 4: Integrate resulting integral
• Step 5: Return to the initial variable x
Integration by Parts
The formula for the method of integration by
parts is:
_/udv = ·u•v- ;·vd1t
There are three steps how to use this formula:
• Step 1: identify u and dv
• Step 2: compute u and du
• Step 3: Use the integration by parts
formula
Unconstrained
optimization:
Univariate
functions
The following are the steps for finding a solution
to an unconstrained optimization problem:
• Step 1: Find the critical value(s}, such
that:
f '(a) = 0
• Step 2: Evaluate for relative maxima or
minima
o If f "(a) > 0 minima
o If f "(a) > 0 maxima
Unconstrained optimization: Multivariate
functions
The following are the steps for finding ·a
solution to an unconstrained optimization
problem:
Constrained Optimization
The following are the steps for finding a solution
to a constrained optimization problem using the
Langrage technique:
• Step 1: Set up the Langrage equation
Re/alive 11wxi111111n Re/arive 111i11i11111111
I. f,.f,. =0
I. f,.f,. = 0
2. fu, f,.,<. ()
2. f,.,,f,.,>. 0
3. f,, ·/:...,>(f,,.}2 3. L -j,.,.>U,.Y
• Step 2: Derive the First Order Equations
• Step 3: Solve the First Order Equations
• Step 4: Estimate the Langrage Multiplier