Mathematics for Agribusiness
MTA611S
FORMULA
'sasic Derivative Rules
Cllnn1ut :tule. ~(c)- 0
ax
i[ Cons1an1 '.\\fulliple Rule
cf(:c)[ - c/'(x)
PowL•r Rull": ~(.-.:-=} - nx '·'
ax
Sum Ruk ~[/(x)-
w:
g(x)[ - / tx)- g'(x)
Di fic«ncc Rulc" ~[ f(x) - g(x)j - f '(x) - g '(x)
ox
Product Ruic· dd [/(x)g(x)j
X
/(x) g'(x)- g(x)F(x)
Chain Ruic- f(g(x)) - / '(g(x))g'(x)
ca
Derivative Rules for Exponential Functions
.:!..__(e'=) e"
dx
-ad(') =a 'I na
dx
.:!..__(e'''>=) e'<'>g '(x)
dx
-d(a,c,J)
dx
= ln(a) a ,c,J g '(x)
Derivative Rules for Logarithmic Functions
-(dIn x) = -I, x > 0
dx
x
~ln(g(x))
dx
= g '(x)
g(x)
-(dlog.
dx
-(dlog.
dx
x)= --,xI
>0
x In a
g(x))=
g1x)·
g(x)lna
Basic Integration Rules
f I. ad.x=ax+C
xr.•1
1. fx"dx= ;,+l+C.
11o0-I
f 3. ~<Lr=h+i+C
f 4. e·' ifr = e' + C
5. fa'lfr=~+C
f Ina
<>. lnxllr =xlnx-x+C
Integration by Substitution
The following are the 5 steps for using the integration by
substitution metthod:
• Step 1: Choose a new variable u
• Step 2: Determine the value dx
• Step 3: Make the substitution
• Step 4: Integrate resulting integral
• Step 5: Return to the initial variable x
Integration by Parts
The formula for the method of integration by parts is:
_/1i=d1lv• v-.lvdu
There are three steps how to use this formula:
• Step 1: identify u and dv
• Step 2: compute u and du
• Step 3: Use the integration by parts formula
Unconstrained optimization: Univariate functions
The following are the steps for finding a solution to an
unconstrained optimization problem:
• Step 1: Find the critical value(s), such that:
f'(a) = 0
• Step 2: Evaluate for relative maxima or minima
o If f "(a) > 0 minima
o If f "(a) > 0 maxima
Unconstrained optimization: Multivariate functions
The following are the steps for finding a solution to an
unconstrained optimization problem:
Condition
FOCs or ncccssarv conditions
SOCs or suflicicni conditions
A/a:rim11m
/1 =h = 0
/11 > 0. h.2 > 0, anJ
fi I :f1.2> ({12)2
Ji =h =0
/11 < 0, /22 < 0, and
/j I /22 > (/'t2) 2
Inflection point
/11 <0,/22 <0, and/11:1:!2 <(f12) 2 or
.h I < 0. /22 < 0. :md/1 J/22 < (li2) 2
S;idJle point
/11 > 0 . ./i2< 0, andf11 /22 < (/i2) 2. or
.Ill <0,.f':!2>0,and/i1/,2
<(/·12J"
lni.:onclusivc
Constrained Optimization
The following are the steps for finding a solution to a
constrained optimization problem using the Langrage
technique:
• Step 1: Set up the Langrage equation
• Step 2: Derive the First Order Equations
• Step 3: Solve the First Order Equations
• Step 4: Estimate the Langrage Multiplier
First Opportunity Question Paper
Page 6 of 6
June 2023