

Faculty of Health, Natural Resources and Applied **Sciences**

School of Natural and Applied Sciences

Department of Mathematics, Statistics and Actuarial Science 13 Jackson Kaujeua Street T: +264 61 207 2913 Private Bag 13388 E: msas@nust.na Windhoek W: www.nust.na NAMIBIA

QUALIFICATION: BACHELOR OF SCIENCE IN APPLIED MATHEMATICS AND STATISTICS	
QUALIFICATION CODE: 07BSAM	LEVEL: 7
COURSE: NUMERICAL METHODS 2	COURSE CODE: NUM702S
DATE: NOVEMBER 2024	SESSION: 1
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY: QUESTION PAPER

EXAMINER:

Dr SN NEOSSI-NGUETCHUE

MODERATOR:

Prof S.S. MOTSA

INSTRUCTIONS:

- 1. Answer ALL the questions in the booklet provided.
- 2. Show clearly all the steps used in the calculations. All numerical results must be given using 5 decimals where necessary unless mentioned otherwise.
- 3. All written work must be done in blue or black ink and sketches must be done in pencil

PERMISSIBLE MATERIALS:

1. Non-Programmable Calculator

ATTACHEMENTS

None

This paper consists of 3 pages including this front page

Problem 1 [19 Marks]

1-1. Find the Padé approximation $R_{2,2}(x)$ for $f(x) = \ln(1+x)/x$ starting with the MacLaurin expansion

$$f(x) = 1 - \frac{x}{2} + \frac{x^2}{3} - \frac{x^3}{4} + \frac{x^4}{5} - \dots$$
 [12]

1-2. Use the result in 1-1. to establish $\ln(1+x) \approx R_{3,2} = \frac{30x + 21x^2 + x^3}{30 + 36x + 9x^2}$ and express $R_{3,2}$ in continued fraction form.

Problem 2 [30 Marks]

For any non negative interger n we define Chebyshev polynomial of the first kind as

$$T_n(x) = \cos(n\theta)$$
, where $\theta = \arccos(x)$, for $x \in [-1, 1]$.

[5]

2-1. Show the following property:

$$T_n$$
 has n distinct zeros $x_k \in [-1,1]$: $x_k = \cos\left(\frac{(2k+1)\pi}{2n}\right)$ for $0 \le k \le n-1$.

- **2-2.** Compute the expressions of the first five Chebyshev polynomials of the first kind T_0, T_1, T_2, T_3 and T_4 .
- **2-3.** Given the trucated power series $f(x) = 1 + 2x x^3 + 3x^4$.
 - (i) Economise the power series f(x). [3]
 - (ii) Find the Chebyshev series for f(x). [5]
- **2-4.** (i) Show that the following function f is even and use an appropriate result to find its Fourier series

$$f(x) = \begin{cases} \frac{\pi}{2} + x, & \text{for } -\pi \le x < 0, \\ \frac{\pi}{2} - x, & \text{for } 0 \le x < \pi. \end{cases}$$
 [12]

(ii) Set
$$x = 0$$
 and conclude that $\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots$. [2]

Problem 3 [27 Marks]

3-1. Given the integral

$$\int_0^3 \frac{\sin(2x)}{1+x^5} dx = 0.6717578646 \cdots$$

- **3-1-1.** Compute T(J) = R(J,0) for J = 0, 1, 2, 3 using the sequential trapezoidal rule. [10]
- **3-1-2.** Use the results in **3-1-1.** and Romberg's rule to compute the values for the sequential Simpson rule $\{R(J,1)\}$, sequential Boole rule $\{R(J,2)\}$ and the third improvement $\{R(J,3)\}$. Display your results in a tabular form.
- **3-2.** State the three-point Gaussian Rule for a continuous function f on the interval [-1, 1] and show that the rule is exact for $f(x) = 5x^4$.

Problem 4 [24 Marks]

4-1. The matrix A and its inverse are A^{-1} are given below

$$A = \begin{bmatrix} 1/2 & -1 \\ -1 & 1 \end{bmatrix}, \qquad A^{-1} = \begin{bmatrix} -2 & -2 \\ -2 & -1 \end{bmatrix}.$$

- Use the power method to find the eigenvalue of the matrix A with the smallest absolute value. Start with the vector $\mathbf{x}^{(0)} = (1,0)^T$ and perform two iterations.
- 4-2. Use Jacobi's method to find the eigenpairs of the matrix

$$A = \begin{bmatrix} 1 & \sqrt{2} & 2 \\ \sqrt{2} & 3 & \sqrt{2} \\ 2 & \sqrt{2} & 1 \end{bmatrix}$$

[18]

God bless you!!!