

Faculty of Health, Natural Resources and Applied Sciences

School of Natural and Applied Sciences

Department of Biology, Chemistry and Physics

13 Jackson Kaujeua Street T: +264 61 207 2012 Private Bag 13388 Windhoek NAMIBIA

F: +264 61 207 9012 E: dbcp@nust.na W: www.nust.na

QUALIFICATION: BACHELOR OF SCIENCE	
QUALIFICATION CODE: 07BOSC	LEVEL: 5
COURSE: GENERAL PHYSICS 1B	COURSE CODE: GNP502S
DATE: JANUARY 2025	SESSION: 1
DURATION: 3 HOURS	MARKS: 100

SECOND OPPORTUNITY / SUPPLEMENTARY: EXAMINATION QUESTION PAPER

EXAMINER:

PROF SYLVANUS ONJEFU

MR MARKUS HITILA

MODERATOR:

PROF DIPTI SAHU

INSTRUCTIONS:

- 1. Answer all questions on the separate answer sheet.
- 2. Please write neatly and legibly.
- 3. Do not use the left-side margin of the exam paper. This must be allowed for the examiner.
- 4. No books, notes and other additional aids are allowed.
- 5. Mark all answers clearly with their respective question numbers.

PERMISSIBLE MATERIALS

1. Non-Programmable Calculator

ATTACHMENTS

1. None

This paper consists of 6 pages including the front page

Suggested Question Types: Multiple Choice/Objectives Each question in this section carries two marks

- 1.1 What is the critical angle for light travelling from water to air. Refractive index of water = 4/3. (2)
 - a. 37° 28′ b. 28° 15′ c. 48° 36′ d. 44° 33′
- 1.2 If V is the velocity of a wave, λ its wavelength and T its period, the V, λ and T Are related by the expression: (2)
 - a. $\lambda = VT$ b. $\lambda = \frac{V}{T^2}$ c. $T^2 = \lambda V$ d. $V = \lambda T$
- 1.3 If the angle of incidence for light travelling from air to glass is 45° and the angle of refraction in the glass is 28°, determine the refractive index of glass with respect to air.(2)
 - a. 1.51 b. 0.66 c. 1.62 2.25
- 1.4 What is the speed of compression waves (sound waves) in water? The bulk modulus for water is $2.2 \times 10^9 \text{ N/m}^2$. (2)
 - a. 1.6 km/s b. 1.5 km/s c. 1.7 km/s d. 1.8 km/s
- 1.5 All are example of electromagnetic wave except...... (2)
 - a. visible light b. microwave c. X-rays d. beta
- 1.6 A normal human ear can respond to frequency range. (2)
 - a. 20 Hz to 20,000 Hz $\,$ b. 20,000 Hz to 20,000000 Hz $\,$ c. below 20 Hz
 - d. above 20,000 Hz
- 1.7 What is the refractive index of a substance if the real depth is 6 m and its apparent depth is 4.5 m?
 - a. 10.5 b. 1.33 c. 1.50 d. 0.75

(2)

1.8	The direction of light ray changes as it passes from one medium to another. The phenomenon is called	
	a. Diffraction b. refraction c. dispersion d. reflection	
1.9	An object with a height of 1.00 cm is placed 10.0 cm from a concave mirror whose radius of curvature is 30.0 cm. Determine the position of the image.	(2)
	a. 30 cm b. – 30 cm c. 20 cm d 20 cm	
1.10	In the dispersion of white light into its component colors,is the least bent.	(2)
	a. Violet b. blue c. green d. red	
1.11	The mirage is a phenomenon of	(2)
	a. Interference b. total internal reflection c. dispersion d. diffraction	
1.12	has the shortest wavelength when a triangular prism spread white light out into its component colors.	(2)
	a. Yellow b. indigo c. orange d. violet	
1.13	Wave tend to spread out or bend in when they pass an edge or through a gap. This bending effect is called what?	(2)
	a. dispersion b. diffraction c. superposition d. interference	
1.14	The focusing of different colours of light at different distances behind a lens is known as what?	(2)
	a. myopia b. hyperopia c. astigmatism d. chromatic aberration	
1.15	In an instance where a wave travel along the same flat plane in which the vibrating particle that carries the wave oscillate, such waves are called what?	(2)
	a. gamma waves b. longitudinal waves c. transverse waves d. x- rays	
Gene	ral Physics 1B (GNP502S) 2 nd Opportunity January 2025	3

1.16	The whistle of a train emits a tone of frequency 440 Hz as the train approaches a stationary observer at 30 m/s. What frequency does the observer hear? [Speed of wave is 331 m/s].		
	a. 380 Hz b. 483 Hz c. 485 Hz d. 484 Hz		
1.17	7 is the characteristic of a note which enables us to differentiate a high note from a low note.	(2)	
	a. Intensity b. node c. pitch d. loudness		
1.18	One cycle of a wave takes 0.1 s to pass a stationary observer. What is the frequency of the wave?	(2)	
	a. 0.1 Hz b. 0.2 Hz c. 10 Hz d. 20 Hz		
1.19	What is the critical angle for light travelling from water to air? [Take $\frac{1}{a}n_w = \frac{4}{3}$].	(2)	
	a. 0.75°1' b. 48°'36' c. 28°40' d. 25°17'		
1.20	A long rope is fixed at one end, and the free end is made to oscillate in one plane at right angles to the rope with frequency of 4 Hz. The successive crests are 0.6 m apart. Determine the speed of the waves.	(2)	
	a. 6.7 m/s b. 0.15 m/s c. 2.4 m/s d. 4.6 m/s		
SEC	CTION B [60 MARI	(S]	
QUE	ESTION 2 [16 MARI	(S]	
2.1	A concave mirror of radius of curvature 20 cm produces an inverted image 3 times the size of an object placed perpendicular to the axis. Calculate the positions of the object and the image.	(8)	
2.2	State the two condition that must be fulfilled for total internal reflection to occur.	(4)	
2.3	A thin glass lens (n = 1.5) has a focal length of + 10 cm in air. Compute its focal length in water (n = 1.33).	(4)	
Gen	neral Physics 1B (GNP502S) 2 nd Opportunity January 2025	4	

1.16

QUESTION 3	[15 MARKS]
3.1 Differentiate between chromatic aberration and spherical aberration and give one example for each of their correction.	(6)
3.2 If tension is maintained on a stretched string of length 0.6 m, such the fundamental frequency of 220Hz is excited, determine the velocity of transverse wave in the string.	
3.3 Light of wavelength 750 nm passes through a slit 1.0 X 10 ⁻³ mm wide wide is the central maximum on a screen 20 cm away?	e. How (5)
QUESTION 4	[14 MARKS]
4.1 State doppler effect in sound.	(2)
4.2 An automobile moving at 30.0 m/s is approaching a factory whistle that a frequency of 500 Hz.	at has
4.2.1 If the speed of sound in air is 340 m/s, what is the apparent frequer whistle as heard by the driver?	ncy of the (3)
4.2.2 Repeat for the case of a car leaving the factory at the same speed.	(3)
4.3 When two tuning forks are sounded simultaneously, they produce o every 0.30 seconds.	ne beat
4.3.1 By how much their frequency differ if the number of beats per secon equal the frequency difference.	nd (3)
4.3.2 A tiny piece of chewing gum is placed on a prong of one fork. Now the one beat every 0.40 seconds. Was this turning fork lower- or the high frequency fork?	
QUESTION 5	[15 MARKS]
5.1 When a fish looks up at the surface of a perfectly smooth lake, the su Appears dark except inside a circular area directly above it. Calculate angle \emptyset that this illuminated region subtends. (The index of refraction $n_2=1.333$ and of air is $n_1=1$).	the

- 5.2 The length of air column at which the first resonance was observed, when a vibrating fork was placed on a resonance tube, was 30 cm. Determine the wavelength of the air column and the frequency of the fork.

 [Take speed of sound as 330 m/s] (4)
- 5.3 Compute the speed of sound in neon gas at 27°C. For neon, M = 20.18kg/kmol. [Take the ratio of the specific heat γ , for monoatomic gas as 1.67, R = gas constant = 8314 J/Kmol.K]. (3)
- 5.4 Find the speed of sound in a diatomic ideal gas that has a density of 3.50 kg/m 3 and a pressure of 215 kPa. [Using the equations of gas law PV = (m/M) RT; ratio of specific heat capacity, Y, = 1.40 for a diatomic ideal gas]. (4)

END OF QUESTION PAPER