

Faculty of Health, Natural **Resources and Applied Sciences**

School of Natural and Applied Sciences

Department of Biology, Chemistry and Physics

MARKS: 100

QUALIFICATION: BACHELOR OF SCIENCE	
QUALIFICATION CODE: 07BOSC	LEVEL: 5
COURSE: GENERAL CHEMISTRY 1B	COURSE CODE: GNC502S
DATE: NOVEMBER 2024	SESSION: 1

FIRST OPPORTUNITY: QUESTION PAPER

EXAMINER:

DR MARIUS MUTORWA

MODERATOR:

DURATION: 3 HOURS

PROF LAMECH MWAPAGHA

INSTRUCTIONS:

- 1. Answer ALL the questions.
- 2. Write clearly and neatly.
- 3. Number the answers clearly
- 4. All written work must be done in blue or black ink and sketches can be done in pencil.
- 5. No books, notes and other additional aids are allowed.

PERMISSIBLE MATERIALS

Non-programmable calculators

ATTACHMENTS

- 1. Useful Constants Data
- 2. Periodic Table

This paper consists of fourteen (11) pages including this front page.

QUESTION 1: MULTIPLE CHOICE QUESTIONS

There are 20 multiple choice questions in this section. Each question carries 3 marks. Answer ALL questions by selecting the letter of the correct answer, even if you think there is another possible answer that is not given.

- 1. The rate law for a reaction is $rate = k[A]^2[B]$. Which of the following mixtures of reactants will give the <u>smallest initial rate?</u>
 - A. 1.0 M [A], 1.0 M [B]
 - B. 2.0 M [A], 0.50 M [B]
 - C. 0.50 M [A], 0.50 M [B]
 - D. 0.125 M [A], 3.0 M [B]
- 2. The reaction of NO and O₂ produces NO₂.

$$NO(g) + O_2(g) \rightarrow NO_2(g)$$

The reaction is second-order with respect to NO(g) and first-order with respect to O₂(g). At a given temperature, the rate constant, k, equals 4.7×10^2 M⁻²s⁻¹. What is the rate of reaction when the initial concentrations of NO and O₂ are 0.025 M and 0.015 M, respectively?

- A. 2.6×10^{-3} M/s
- B. 4.4×10^{-3} M/s
- C. 0.18 M/s
- D. 2.0×10^{-8} M/s
- 3. How are the exponents in a rate law determined?
 - A. They are equal to the inverse of the coefficients in the overall balanced chemical equation.
 - B. They are determined by experimentation.
 - C. They are equal to the coefficients in the overall balanced chemical equation.
 - D. They are equal to the reactant concentrations.

4. In a first-order reaction, the half-life is 144 minutes. What is the rate constant?

A.
$$8.02 \times 10^{-5} \,\mathrm{s}^{-1}$$

B.
$$4.81 \times 10^{-3} \text{ s}^{-1}$$

C.
$$1.16 \times 10^{-4} \, \text{s}^{-1}$$

- D. 5980 s⁻¹
- 5. Which statement concerning relative rates of reaction is correct for the chemical equation given below?

$$2 \text{ CH}_3\text{OH}(g) + 3 \text{ O}_2(g) \rightarrow 2 \text{ CO}_2(g) + 4 \text{ H}_2\text{O}(g)$$

- A. The rate of disappearance of CH₃OH is equal to the rate of disappearance of O₂.
- B. The rate of disappearance of CH₃OH is two times the rate of appearance of H₂O.
- C. The rate of appearance of H_2O is two times the rate of appearance of CO_2 .
- D. The rate of disappearance of CH₃OH is half the rate of appearance of CO₂.
- 6. Which of the following statements is/are CORRECT?
 - A. For a chemical system, if the reaction quotient (Q) is greater than K, reactant must be converted to products to reach equilibrium.
 - B. For a chemical system at equilibrium, the forward and reverse rates of reaction are equal.
 - C. For a chemical system at equilibrium, the concentrations of products divided by the concentrations of reactants equals one.
 - D. None of the above
- 7. Write the expression for *K* for the reaction below:

$$Al^{3+}(aq) + 4 OH^{-}(aq) \implies Al(OH)_4^{-}(aq)$$

$$K = \frac{\left[Al^{3+}\right]\left[OH^{-}\right]}{\left[Al(OH)_{4}^{-}\right]}$$
 A.

$$K = \frac{\left[\text{Al(OH)}_{4}^{-}\right]}{\left[\text{OH}^{-}\right]^{4}}$$

$$K = \frac{\left[\text{Al(OH)}_{4}^{-}\right]}{\left[\text{Al}^{3+}\right]\left[\text{OH}^{-}\right]^{4}}$$
 C.

$$K = \frac{\left[\text{Al}^{3+}\right]\left[\text{OH}^{-}\right]^{4}}{\left[\text{Al}(\text{OH})_{4}^{-}\right]}$$

8. What is the H_3O^+ concentration in 0.0013 M LiOH(aq) at 25 °C? ($K_w = 1.01 \times 10^{-14}$)

A.
$$7.7 \times 10^{-12} M$$

B.
$$8.7 \times 10^{-12} M$$

C.
$$10.6 \times 10^{-12} M$$

D.
$$5.6 \times 10^{-12} M$$

9. Write a balanced chemical equation which corresponds to the following equilibrium constant expression.

$$K = \left[Pb^{2+} \right] \left[F^{-} \right]^{2}$$

A.
$$PbF_2(s) \Longrightarrow Pb^{2+}(aq) + 2 F^{-}(aq)$$

B.
$$PbF_2(aq) \rightleftharpoons Pb(s) + F_2(aq)$$

C.
$$Pb(s) + F_2(aq) \Longrightarrow PbF_2(aq)$$

D.
$$PbF^{+}(aq) + F^{-}(aq) \Longrightarrow PbF_{2}(aq)$$

- 10. If the reaction quotient, Q, is greater than K in a gas phase reaction, then
 - A. The chemical system has reached equilibrium.
 - B. The reaction will proceed in the backward direction until equilibrium is established.
 - C. The reaction will proceed in the direction that increases the number of gas phase particles.
 - D. The reaction will proceed in the forward direction until equilibrium is established.

11. Balance the following oxidation-reduction occurring in acidic solution.

$$MnO_4^{-}(aq) + Co^{2+}(aq) \rightarrow Mn^{2+}(aq) + Co^{3+}(aq)$$

A.
$$MnO_4^-(aq) + 8H^+(aq) + 5Co^{2+}(aq) \rightarrow Mn^{2+}(aq) + 4H_2O(I) + 5Co^{3+}(aq)$$

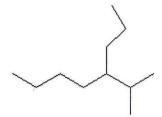
B.
$$MnO_4^-(aq) + 8H^+(aq) + Co^{2+}(aq) \rightarrow Mn^{2+}(aq) + 4H_2O(I) + Co^{3+}(aq)$$

C.
$$MnO_4^-(aq) + 4H_2(g) + 5Co^{2+}(aq) \rightarrow Mn^{2+}(aq) + 4H_2O(I) + 5Co^{3+}(aq)$$

D.
$$MnO_4^-(aq) + 8H^+(aq) + 2Co^{2+}(aq) \rightarrow Mn^{2+}(aq) + 4H_2O(I) + 2Co^{3+}(aq)$$

12. In ionic bond	formation, the lattice en	ergy of ions	as the magnitude of the ion
charges	and the radii		

- A. Increases, decrease, increase
- B. Increases, increase, increase
- C. Decreases, increase, increase
- D. Increases, increase, decrease


- A. 18
- B. 20
- C. 26
- D. 32

- A. PO₄³-
- B. SiF₄
- C. CF₄
- D. SeF₄

15. How many structural isomers can be drawn for a molecule with formula C₅H₁₀?

- A. 7
- B. 8
- C. 10
- D. 12

16. Give the IUPAC name for the following structure.

- A. 3-ethyl-2methylheptane
- B. 5-isopropyloctane
- C. 4-isopropyloctane
- D. 2-methyl-3-propylheptane
- 17. What is the electron configuration for the Fe³⁺ ion?
 - A. [Ar]4s13d6
 - B. [Ar]4s⁰3d⁷
 - C. [Ar]4s⁰3d⁵
 - D. [Ar]4s²3d⁹
- 18. Using the VSEPR model, the molecular geometry of the central atom in tetrafluoroborate ion is ______.
 - A. square pyramidal
 - B. square planar
 - C. trigonal bipyramidal
 - D. octahedral
- 19. After drawing the Lewis dot structure of HOClO₂, pick the INCORRECT statement of the following.
 - A. The oxygen bonded to the hydrogen has two lone pairs.
 - B. The oxygens not bonded to hydrogen have three lone pairs.
 - C. The O-Cl bonds are all double bonds.
 - D. The H-O bond is a single bond.

20. Which of the pairs of molecules below have the same hybridization on the central atom? (The central atom is underlined in each molecule.)

- A. CO2, CH4
- B. H2CO, <u>Be</u>H2
- C. <u>B</u>Cl₃, H<u>N</u>O
- D. <u>N</u>H₃, H<u>N</u>O

END OF SECTION A

SECTION B: [40 MARKS]

QUESTION 2 [12]

2.1 Sucrose is oxidised to CO₂ & H₂O, and the enthalpy change for reaction is:

$$C_{12}H_{22}O_{11}$$
 (s) + 12 O_2 (g) \rightarrow 12 CO_2 (g) + 11 H_2O (I) $\Delta_rH^0 = -5645$ kJ/mol-rxn

- What is the enthalpy change when 5.00 g of sugar is burned under constant pressure? (4)
- 2.2 Suppose you want to know the enthalpy change for the formation of methane from solid carbon and hydrogen gas: (8)

$$C(s) + 2 H_2(g) \rightarrow CH_4(g)$$
. $\Delta_r H^0 = ?$

Equation 1: C (s) + O₂ (g)
$$\rightarrow$$
 CO₂ (g) $\Delta_r H_1^0 = -393.5 \text{ kJ/mol-rxn}$

Equation 2:
$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(I)$$
 $\Delta_r H_2^0 = -285.8 \text{ kJ/mol-rxn}$

Equation 3: CH₄ (g) + 2 O₂ (g)
$$\rightarrow$$
 CO₂ (g)+ 2 H₂O (I) Δ_r H₂⁰ = -890.3 kJ/mol-rxn

Use this information to calculate $\,\Delta_r H^0$ for formation of methane from its elements.

- 3.1 In a NaOH solution [OH-] is 2.9 x 10⁻⁴ M. Calculate the pH of the solution. (2)
- 3.2 Calculate the pH of a:

a)
$$1.0 \times 10^{-3}$$
 M HCl solution (2)

b)
$$0.020 \text{ M Ba}(OH)_2 \text{ solution}$$
 (4)

Consider the Lewis structure for ethyl acetate below, used as a solvent and aroma enhancer.

$$H : O: H H$$
 $1 \mid 2 \mid 3 \mid 1 \mid 1$
 $H - C - C - O - C - C - H$
 $H + H H$

- 4.1 How many valence electrons are used to make the sigma bonds in the molecule? (2)
- 4.2 What is the hybridization at each of the atoms (C1, C2 and O3) which are numbered? (6)
- 4.3 Identify the functional groups in the following molecules. (2)

QUESTION 5: [10]

The lactic acid molecule, CH₃CH(OH)COOH, gives sour milk its unpleasant, sour taste.

- a) Draw the Lewis structure for the molecule, assuming carbon always forms four bonds in its stable compounds.
- b) How many π and σ bonds are in the molecule? (2)
- c) What is the hybridization of atomic orbitals around the carbon atom associated with the shortest bond in the molecule? (2)
- d) What is the bond angle around the carbon atom associated with the shortest bond in the molecule? (2)

END OF QUESTION PAPER

USEFUL CONSTANTS:

Gas constant, $R = 8.3145 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$

= 0.083145 dm³ · bar · mol⁻¹ · K⁻¹

= 0.08206 L atm mol⁻¹· K⁻¹

 $1 \text{ Pa} \cdot \text{m}^3 = 1 \text{ kPa.L} = 1 \text{ N} \cdot \text{m} = 1 \text{ J}$

1 atm = 101 325 Pa = 760 mmHg = 760 torr

Avogadro's Number, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Planck's constant, $h = 6.626 \times 10^{-34} \text{ Js}$

Speed of light, $c = 2.998 \times 10^8 \text{ ms}^{-1}$

Faculty of Health, Natural Resources and Applied Sciences

School of Natural and Applied Sciences

Department of Biology, Chemistry and Physics

13 Jackson Kaujeua Street T: +264 61 207 2012 Private Bag 13388 F: +264 61 207 9012 Windhoek E: dbcp@nust.na NAMIBIA W: www.nust.na

The content of the	2 He 4.0026 neon 10 Ne 20.180 argon 18 Ar 39.948 krypton
1,0079 1	10 Ne 20.180 argon 18 Ar 39.948
Scandium Standium Standium	neon 10 Ne 20.180 argon 18 Ar 39.948
Secondium Seco	10 Ne 20.180 argon 18 Ar 39.948
B C N O F	Ne 20.160 argon 18 Ar 39.948
6.941 9.0122 sodium magnesium 11 12 Na Ng 22.990 24.305 polassium 19 20 18.990 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	20.180 argon 18 Ar 39.948
Sodium magnesium 12 Na Ng 22,990 24,305 polassium 19 20 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 35	argon 18 Ar 39.948
11	18 Ar 39.948
22.990 24.305 26.982 28.086 30.974 32.065 35.453 25.453 25.453 25.453 25.453 25.453 25.453 25.453	39.948
22.990 24.305 26.982 28.086 30.974 32.065 35.453 32.065 35.453 32.065 35.453 32.065 36.453 32.065 32.065 36.453 32.065 36.453 32.065 36.453 32.065 36.453 32.065 36.453 32.065 36.453 32.065	
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	krypton
	36
	Kr
39.098 40.078 44.956 47.867 50.942 51.996 54.938 55.845 58.933 58.693 63.546 65.39 69.723 72.61 74.922 78.96 79.904	83.80
rubldium strontium yttrium zirconium niobium molybdenum technetium ruthenium rhodium silver cadmium indium tin antimony tellurium iodine 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	xenon 54
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I	Xe
85.468 87.62 88.906 91.224 92.906 95.94 [98] 101.07 102.91 106.42 107.87 112.41 114.82 118.71 121.76 127.60 126.90	131.29
caesium barium lutelium hafnium tantalum tungsten rhenium osmilum iridium platinum gold mercury thallium lead bismuth polonium astatine 55 56 57-70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85	radon 86
│Cs│Ba│ *│Lu│ Hf│ Ta│ W│ Re│ Os│ Ir │ Pt│ Au│ Hg│ TI│ Pb│ Bi│ Po│ At│	Rn
132.91 137.33 174.97 178.49 180.95 183.84 186.21 190.23 192.22 195.08 196.97 200.59 204.38 207.2 208.98 [209] [210]	[222]
francium radium lawrencium rutherfordium dubnium seaborgium bohrium hassium meitnerium ununnilium ununnuium ununbium ununnbium ununnbium ununnbium laurunguadium 114	
│ Fr │ Ra │ ★ ★│ Lr │ Rf │ Db │ Sg │ Bh │ Hs │ Mt │Uun│Uuu│Uub│ │Uuq│	
[223] [226] [262] [261] [262] [266] [264] [269] [268] [271] [272] [277] [289]	

*Lanthanide series

* * Actinide series

lar	thanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
1	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
1	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
0	ctinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinlum	fermium	mendelevium	nobelium
	89	90	91	92	93	94	95	96	97	98	99	100	101	102
1	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]