

HAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OFCOMMERCE, HUMAN SCIENCE AND EDUCATION

DEPARTMENT OF ECONOMICS, ACCOUNTING AND FINANCE

QUALIFICATION: BACHELOR OF	QUALIFICATION: BACHELOR OF ECONOMICS				
QUALIFICATION CODE: 07BECO	LEVEL: 7				
COURSE CODE: ECM712S	COURSE NAME: ECONOMETRICS				
SESSION: JUNE 2024	PAPER: THEORY				
DURATION: 3 HOURS	MARKS: 100				

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER		
MR. PINEHAS NANGULA		
Dr R. KAMATI		

INSTRUCTIONS		
	1.	Answer ALL the questions in section A and B
	2.	Write clearly and neatly.
	3.	Number the answers clearly.

PERMISSIBLE MATERIALS

- 1. Scientific calculator
- 2. Pen and Pencil
- 3. Ruler

This question paper consists of _8_ pages (including this front page)

SECTION A [20 MARKS]

MULTIPLE CHOICE QUESTIONS

- 1. After estimating by OLS a two regression model, the resulting residuals:
 - a) Add up to zero if a constant term was included in the model.
 - b) Are orthogonal to the model regressors only if a constant term was included in the model.
 - c) Have constant variances and null covariances whenever the model errors have these properties.
 - d) None of the above
- 2. What is the difference between R^2 and the adjusted R^2 ?
 - a) the adjusted R² always increases as more independent variables are added to the model
 - b) the adjusted R² is smaller in this case because the constant term is negative
 - c) the adjusted R² adjusts explanatory power by the degrees of freedom
 - d) None of the above

Use the following to answer questions 3-5:

Eight students are selected randomly and their present graduate GPA is compared to their undergraduate GPA and scores on standardized tests.

The data are shown below:

Present	Undergraduate	Standard
GPA	GPA	Scores
3.89	3.77	700
3.03	2.75	460
3.34	3.11	550
3.85	3.75	690
3.93	4	720
3.06	2.92	420
3.69	3.7	670
3.91	3.88	670

SUMMARY OUTPUT

Regression Statistics	,
Multiple R	0.992759
R Square	
Adjusted R Square	0.9798
Standard Error	0.05485
Observations	8

ANOVA

	df	SS	MS	F
Regression	2	1.027507	0.513754	170.7665
Residual	5	0.015043	0.003009	
Total	7			

	Coefficients	Standard Error	t Stat	P-value
Intercept	1.106574	0.205921	5.373784	0.003005
Undergr GPA	0.477483	0.162989	2.929546	0.03265
Std Scores	0.001339	0.000669	2.000745	0.101843

3. Write the regression equation, letting undergraduate GPA be variable 1 and standard scores be variable 2.

a)
$$Y = 0.4775 X_1 + 0.0013392 X_2$$

b)
$$Y = 0.2059 + 0.1630X_1 + 0.0006693X_2$$

c)
$$Y = 1.1066 + 0.4775X_1 + 0.0013392X_2$$

d) none of the above is correct

4. At the 5% level of significance, are undergraduate scores and standard scores significant?

- a) both are significant
- b) neither are significant
- c) only undergraduate GPA is significant
- d) only standard scores are significant

5. Compute R².

- a) 99.4%
- b) 98.6%
- c) 20.8%
- d) very close to 100%
- 6. Dummy variables are used when:
 - a) qualitative variables are involved in the model
 - b) quantitative variables are involved in the model
 - c) doing residual analysis
 - d) making transformations of quantitative variables
- 7. Suppose you obtain the following fitted model: $\widehat{bwght} = \hat{\beta}_0 + \hat{\beta}_1 cigs + \hat{\beta}_2 faminc$, where bwght is child birth weight in ounces, cigs is the average daily number of cigarettes smoked per day by the mother during pregnancy, and faminc is family income measured in dollars.
 - $\hat{\beta}_0$ is an estimate of
 - a) how many cigarettes a day it takes to lower birth weight by 1 ounce, on average
 - b) how many ounces an extra cigarette a day lowers birth weight, on average.
 - c) how many ounces the average baby weighs, when cigs=0 and faminc=0.
 - d) the standard error of cigs.
- 8. The interpretation of the slope coefficient in the model $lnY_i = \beta_0 + \beta_1 \ln X_i + u_i$ is as follows: a
 - a) change in X by one unit is associated with a 100 % change in Y.
 - b) 1% change in X is associated with a % change in Y.
 - c) 1% change in X is associated with a change in Y of 0.01
 - d) change in X by one unit is associated with a change in Y.
- 9. What will be the properties of the OLS estimator in the presence of multicollinearity?
 - a) It will be consistent, unbiased and efficient
 - b) It will be consistent and unbiased but not efficient
 - c) It will be consistent but not unbiased

- d) It will not be consistent
- 10. Which one of the following statements best describes a Type II error?
 - a) It is the probability of incorrectly rejecting the null hypothesis
 - b) It is equivalent to the power of the test
 - c) It is equivalent to the size of the test
 - d) It is the probability of failing to reject a null hypothesis that was wrong

SECTION B [80 MARKS]

QUESTION ONE [30 MARKS]

a) Between sample one and sample two below, which one do you think estimate population parameters better i.e. which sample has a small residual sum of square? [20 marks]

Sample One		Sample Two	
Consumption	Income	Consumption	Income
70	80	55	80
65	100	80	100
90	120	90	120
95	140	80	140
110	160	118	160
115	180	120	180

b) The data in the table below refer to a total population of 16 families in a hypothetical community and their weekly income (I) and weekly consumption expenditure (C), both in dollars. The 16 families are divided into 4 income groups (from N\$80 to N\$140) and the weekly expenditures of each family in the various groups are as shown in the table below.

	Weekly Family Income				
	80	100	120	140	
Weekly Family	75	90	110	135	
Expenditure	79	89	80	137	

75	99	98	120	
65		100	129	
		115		

Use information in the table above to draw population regression line.

[10 marks]

QUESTION TWO

[30 MARKS]

a) Summary output table of $\hat{Y}_i = \hat{\beta}_1 + \hat{\beta}_2 X_i$ where y-hat is the estimated consumption and x is consumer level of income

Multiple R

0.998906

R Square

i)

Adjusted R Square

0.997614

Standard Error

21.14699

Observations

13

ANOVA

	df	SS	MS	F	Significance F
Regression	1	2244134	2244134	5018.24	5.51E-16
Residual	11	iv)	447.1954		
Total	12	2249053			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	-158.409	56.99757	ii)	0.017929	-283.86
X(Income)	iii)	0.009905	70.83953	5.51E-16	0.679847

Use the information above to answer the following questions:

i) Calculate R² of this model

[3 marks]

ii) Calculate the t statistics of the intercept

[3 marks]

iii) Calculate slope coefficient or income parameter

[3 marks]

iv) Calculate residual sum of square (RSS)

[3 marks]

v) Is this model supposed to be an intercept present model or intercept absent model if adjusted R^2 =0.916624 of the absent intercept model? [6 marks]

b) Given the following two summary output tables Summary output table 1

$$[\,\hat{Y}_i=\hat{\beta}_1+\hat{\beta}_2X_i+\hat{\beta}_3GD_i]$$

Regression Statistics					
Multiple R	0.999074 0.998149	_			
R Square Adjusted R Square Standard Error Observations					
	0.987779				
	20.40407				
	13				
	df	SS	MS	Significance F	-
Regression	2	2244890	1122445	2.17E-14	-
Residual	10	4163.263	416.3263		
Total	12	2249053			
	Coefficients	Standard Error	t Stat	Lower 95%	Upper 95%
Intercept	-155.853	55.02788	-2.83226	-278.463	-33.2437
Xi	0.700197	0.009617	72.80746	0.678769	0.721626
GDi	0.000272	0.000202	1.347446	-0.00018	0.000723

Summary output table 2

$$[\hat{Y}_i = \hat{\beta}_1 + \hat{\beta}_2 X_i]$$

	df	SS		
Observations	13			
Standard Error	21.14699			
Adjusted R Square	0.999914			
R Square	0.997813			
Multiple R	0.998906			

	df	SS	MS	Significance F	_
Regression	1	2244134	2244134	5.5104E-16	_
Residual Total	11 12	4919.149 2249053	447.1954		
	Coefficients	Standard Error	t Stat	Lower 95%	Upper 95%
Intercept	-158.409	56.99757	-2.77923	-283.86022	-32.9586
Xi	0.701647	0.009905	70.83953	0.67984663	0.723447

Did we make a mistake by including government debt (GD) in the model? Use evidence from the two summaries out table to justify your answer. [12 marks]

QUESTION THREE [20 MARKS]

a) Use relevant economics examples to discuss two types of error that arise in hypothetical conclusions [8 marks]

b) Discuss three approaches to hypothesis testing. In your discussion, make sure to highlight the decisions rule associated with each approach. [12 marks]

All the best