

Faculty of Health, Natural Resources and Applied Sciences

School of Natural and Applied Sciences

Department of Mathematics, Statistics and Actuarial Science 13 Jackson Kaujeua Street Private Bag 13388 Windhoek NAMIBIA

T: +264 61 207 2913 E: msas@nust.na W: www.nust.na

QUALIFICATION: BACHELOR of SCIENCE IN APPLIED MATHEMATICS AND STATISTICS and BACHELOR OF SCIENCE	
QUALIFICATION CODE: 07BSAM / 07BOSC	LEVEL: 6
COURSE: CALCULUS 2	COURSE CODE: CLS601S
DATE: JANUARY2025	SESSION: 1
DURATION: 3 HOURS	MARKS: 100

SECOND OPPORTUNITY / SUPPLEMENTARY: EXAMINATION QUESTION PAPER

EXAMINER:

Mr Benson.E Obabueki

MODERATOR:

Dr. David liyambo

INSTRUCTIONS

- 1. Answer all questions on the separate answer sheet.
- 2. Please write neatly and legibly.
- 3. Do not use the left side margin of the exam paper. This must be allowed for the examiner.
- 4. No books, notes and other additional aids are allowed.
- 5. Mark all answers clearly with their respective question numbers.
- 6. All written work must be done in blue or black ink and sketches in pencil.
- 7. Show clearly all the steps used in the calculations.

PERMISSIBLE MATERIALS:

1. Non-Programmable Calculator without a cover.

ATTACHEMENTS

None

This paper consists of 2 pages excluding this front page

Question 1 (29 marks)

Determine the following indefinite integrals using only the indicated method for each:

1.1
$$\int (3t+5)\cos(\frac{t}{4})dt$$
 using integration by parts. (6)

1.2
$$\int \frac{x^2 + 7}{3x^3 + 4x^2 - 4x} dx$$
 using integration by partial fractions. (10)

1.3
$$\int \frac{x+2}{\sqrt[3]{x-3}} dx \text{ using u-substitution. (Hint: Let } u = \sqrt[3]{x-3} \text{).}$$
 (6)

1.4
$$\int \frac{3dx}{\cos^2 x}$$
 using the t-formula. (7)

Question 2 (18 marks)

2.1 Use the trapezoidal rule to estimate
$$\int_{0}^{1} x^{3} dx$$
 with $n = 6$. (10)

2.2 What value of n will be required to estimate $\int_{0}^{1} x^{3} dx$ correct to within 0.001 using the trapezoidal rule? (8)

Question 3 (10 marks)

3.1 Evaluate the improper integral
$$\int_{1}^{\infty} \frac{1}{x^2} dx$$
. (4)

3.2 Calculate the mean value of
$$f(x) = \frac{2x}{3x^2 + 5}$$
 for $0 \le x \le 2$. (6)

Question 4 (19 marks)

- 4.1 Determine the position of the centroid of the plane figure bounded by $y = e^{2x}$, the x -axis, the y-axis and the ordinate x = 2. (9)
- 4.2 Determine the length of the first quarter of the circle $y^2 + x^2 = 1$. (10)

Question 5 (24 marks)

- 5.1 Determine up to the fourth-degree term of the Maclaurin's series for $f(x) = x^2 e^x$ from the definition. That is, without assuming that $e^{\theta} = \sum_{n=0}^{\infty} \frac{\theta^n}{n!}$. (11)
- 5.2 Express $(4,60^{\circ})$ in cartesian coordinate form. (5)
- 5.3 Determine the equations of the tangent and the normal to the curve $x^2 + y^2 4xy + 2x = 3$ at (0, 2). (8)

Total marks: 100

End of paper