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Question 1.

Consider the functions f(z) = 42 + 9, g(z) = V1 — zZand h(z) =422 - 3; > 0.

a) Find the sum of the smallest and the largest numbers in the domain of % [9]

b) Determine whether g is even, odd or neither. [4]

¢) Determine whether A1 exists. If it does, find it. [10]
Question 2.

a) Find the following limits, if they exist.

4 + 12
i) i . 5
L e e ey g (5]
1

ii) i i z 8

(ii) Jc_I)rng(e + 1) [8]

b) Use the e — § method to show that Iim2(10x —6) =14. (71
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Question 3.
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a) Use the definition (first principle) to find the derivative of f(z) = — — 5 10
) fi (first principle) flz) = — Y [10]
b) Differentiate the function f(z) = (In3)%®°® 4 tan—!(In 4z). [6]

c) If the equation 22y + sin y = 27 determines a differentiable function f such thaty = f(z), find the
equation of the tangent line to the graph of the given equation at the point P(1, 27).

(8]

Question 4.

Let f(z) = |2z — 10|+ 2.

a) Show that f is continuous at z = 5. [7]

b) Show that f is not differentiable at z = 5. [8]
Question 5.

Let f(z) = ‘%4 — 222 4+ 4 and g(z) = 2z* — 823 + 316z — 172.

a) Find the intervals on which f is increasing and on which it is decreasing. [9]

b) Find the intervals on which the graph of y = g(z) is concave upwards and on which it is concave

downwards. [9]
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