

Faculty of Health, Natural Resources and Applied Sciences

School of Natural and Applied Sciences

Department of Mathematics, Statistics and Actuarial Science 13 Jackson Kaujeua Street Private Bag 13388 Windhoek NAMIBIA T: +264 61 207 2913 E: msas@nust.na W: www.nust.na

QUALIFICATION: BACHELOR OF SCIENCE IN APPLIED MATHEMATICS AND STATISTICS & BACHELOR OF SCIENCE			
QUALIFICATION CODE:	07BSAM, & 07BSOC	LEVEL:	5
COURSE:	CALCULUS 1	COURSE CODE:	CLS502S
DATE:	NOVEMBER 2024	SESSION:	1
DURATION:	3 HOURS	MARKS:	100

FIRST OPPORTUNITY EXAMINATION: QUESTION PAPER

EXAMINER:

Dr. David liyambo

MODERATOR:

Dr. Nega Chere

INSTRUCTIONS:

- 1. Attempt all the questions in the booklet provided.
- 2. Please write neatly and legibly using a black or blue inked pen, and sketches must be done in pencil.
- 3. Do not use the left side margin of the answer script. This must be allowed for the examiner.
- 4. No books, notes or other additional aids are allowed.
- 5. Mark all answers clearly with their respective question numbers.
- 6. Show clearly all the steps used in the calculations.

PERMISSIBLE MATERIALS:

1. Non-programmable calculator without a cover.

ATTACHMENTS:

None

This paper consists of 2 pages including this front page

Question 1.

Consider the functions $f(x)=4x^2+9,\ g(x)=\sqrt{1-x^2}$ and $h(x)=4x^2-3;\ x\geq 0$.

- a) Find the sum of the smallest and the largest numbers in the domain of $\frac{g}{f}$. [9]
- **b)** Determine whether *g* is even, odd or neither. [4]
- c) Determine whether h^{-1} exists. If it does, find it. [10]

Question 2.

a) Find the following limits, if they exist.

(i)
$$\lim_{x \to -3} \frac{4x + 12}{x^3 + 3x^2 - 4x - 12}$$
. [5] (ii) $\lim_{x \to 0^+} (e^x + x)^{\frac{1}{x}}$

(ii)
$$\lim_{x \to 0^+} (e^x + x)^{\frac{1}{x}}$$
 [8]

b) Use the $\varepsilon-\delta$ method to show that $\lim_{x\to 2}(10x-6)=14$. [7]

Question 3.

- a) Use the definition (first principle) to find the derivative of $f(x) = \frac{1}{\pi^2} \frac{x-1}{x+\sqrt{2}}$. [10]
- **b)** Differentiate the function $f(x) = (\ln 3)^{\sec x} + \tan^{-1}(\ln 4x)$. [6]
- c) If the equation $x^2y+\sin y=2\pi$ determines a differentiable function f such that y=f(x), find the equation of the tangent line to the graph of the given equation at the point $P(1,2\pi)$.

[8]

Question 4.

Let f(x) = |2x - 10| + 2.

- a) Show that f is continuous at x = 5. [7]
- **b)** Show that f is not differentiable at x = 5. [8]

Question 5.

Let $f(x) = \frac{x^4}{4} - 2x^2 + 4$ and $g(x) = 2x^4 - 8x^3 + 316x - 172$.

- a) Find the intervals on which f is increasing and on which it is decreasing. [9]
- b) Find the intervals on which the graph of y=g(x) is concave upwards and on which it is concave downwards. [9]

END OF EXAMINATION QUESTION PAPER