

Faculty of Health, Natural **Resources and Applied** Sciences

School of Natural and Applied Sciences

Department of Biology, Chemistry and Physics

13 Jackson Kaujeua Street T: +264 61 207 2012
Private Bag 13388 F: +264 61 207 9012
Windhoek E: dbcp@nust.na NAMIBIA

W: www.nust.na

QUALIFICATION: BACHELOR OF SCIENCE	
QUALIFICATION CODE: 07BOSC	LEVEL: 5
COURSE: GENERAL CHEMISTRY 1B	COURSE CODE: GNC502S
DATE: JANUARY 2025	SESSION: 1
DURATION: 3 HOURS	MARKS: 100

SECOND OPPORTUNITY / SUPPLEMENTARY: QUESTION PAPER

EXAMINER:

DR MARIUS MUTORWA

MODERATOR:

PROF LAMECH MWAPAGHA

INSTRUCTIONS:

- 1. Answer ALL the questions.
- 2. Write clearly and neatly.
- 3. Number the answers clearly
- 4. All written work must be done in blue or black ink and sketches can be done in pencil.
- 5. No books, notes and other additional aids are allowed.

PERMISSIBLE MATERIALS

Non-programmable calculators

ATTACHMENTS

- 1. Useful Constants Data
- 2. Periodic Table

This paper consists of twelve (12) pages including this front page.

SECTION A: [60 MARKS]

QUESTION 1: MULTIPLE CHOICE QUESTIONS

There are 20 multiple choice questions in this section. Each question carries 3 marks. Answer ALL questions by selecting the letter of the correct answer, even if you think there is another possible answer that is not given.

- 1. NaOH + HCl →
 - A. $Na(OH)_2 + H_2$
 - B. NaCl + H₂
 - C. NaCl + H₂O
 - D. NaCl + $H_2 + O_2$
- 2. Phosphoric acid has the formula:
 - A. H₂PO₃
 - B. H₂PO₄
 - C. H₃PO₄
 - D. H₃PO₃
- 3. Which of the following could be added to a solution of sodium acetate (CH₃COONa) to produce a buffer?
 - A. Potassium acetate
 - B. Sodium chloride
 - C. Acetic acid
 - D. None of the above
- 4. In a reaction between CuSO₄(s) and Zn(s):
 - A. Zinc experiences an increase in oxidation state
 - B. Cu undergoes oxidation
 - C. Zn undergoes reduction
 - D. All of the above

5. Ascorbic acid ($C_6H_8O_6$) is a common antioxidant that protects our bodies against radicals. In the redox equation below that occurs in our stomach, which of the following pairs identifies the reducing and oxidizing agents, respectively?

$$C_6H_8O_6 + H^+ + 2NO_2^- \rightarrow C_6H_6O_6 + 2H_2O + 2NO$$

- A. C₆H₈O₆ & NO₂
- B, H+ & NO₂
- C. C₆H₈O₆ & H⁺
- D. H+ & NO₂
- 6. Which of the following half reactions are balanced?
 - A. $CIO^{-} + H_{2}O + e^{-} \rightarrow Cl_{2} + 2OH^{-}$
 - B. $2 \text{ ClO}^- + \text{H}_2\text{O} + 2\text{e}^- \rightarrow \text{Cl}_2 + 3\text{OH}^-$
 - C. $2 \text{ ClO}^- + 2 \text{ H}_2\text{O} + 2 \text{e}^- \rightarrow \text{Cl}_2 + 4 \text{OH}^-$
 - D. $CIO^{-} + H_2O + e^{-} \rightarrow Cl_2 + 2OH^{-}$
- 7. What is the order of the reaction with respect to NO?
 - A. 0
 - B. 1
 - C. -1
 - D. 2
- 8. If the concentration of NO is doubled and that of and H2 is constant, the rate of the reaction would:
 - A. Increase two fold
 - B. Increase four fold
 - C. Decrease two fold
 - D. Decrease four fold

9. The reaction of elemental chlorine with ozone occurs by the two-step process shown below:

I. Cl + O₃
$$\rightarrow$$
 ClO + O₂

II. CIO + O
$$\rightarrow$$
 CI + O₂

Which of the statements below is true regarding this process?

- A. Cl is a catalyst
- B. O₃ is a catalyst
- C. ClO is a catalyst
- D. O₂ is an intermediate
- 10. For the reaction:

$$2NaHCO_3(s) \Leftrightarrow Na_2CO_3(s) + CO_2(g) + H_2O(g)$$

Which one of the following is the correct expression for K_c?

- A. $Kc = [CO_2]$
- B. $Kc = [CO_2][H_2O]$
- C. $Kc = [CO_2][H_2O][Na_2CO_3]/[NaHCO_3]_2$
- D. Kc = [CO₂][Na₂CO₃]/[NaHCO₃]₂
- 11. For which of the following reactions does $K_c = K_p$ at 25°C?
 - A. $2NH_3(g) + CO_2(g) \Leftrightarrow N_2CH_4O(s) + H_2O(g)$
 - B. $2NBr_3(s) \Leftrightarrow N_2(g) + 3Br_2(g)$
 - C. $2KClO_3(s) \Leftrightarrow 2KCl(s) + 3O_2(g)$
 - D. $CuO(s) + H_2(g) \Leftrightarrow Cu(I) + H_2O(g)$
- 12. Which of the following statements correctly describe the basic concepts and uses of VSEPR theory:
 - I) The VSEPR theory is used for estimating bond angles.
 - II) The VSEPR theory is used for predicting electronegativities.
 - III) The VSEPR theory is helpful in predicting polarity.
 - IV) The VSEPR theory states that electron pairs repel each other.
 - V) The VSEPR theory uses valence electron counting for structure prediction.

- A. I), II), III), IV)
- B. I), II), IV), V)
- C. I), II), III), V)
- D. I), III), IV), V)
- 13. What is the correct molecular geometry for SeBr₃+?
 - A. trigonal pyramidal
 - B. tetrahedral
 - C. trigonal planar
 - D. T-shaped
- 14. Which is NOT a valid resonance structure for the anion in the box below?

15. In the following compound, indicate the formal charge on all atoms except hydrogen, from left to right.

- A. Carbon = 0; Nitrogen = -1; Carbon = +1 and Oxygen = 0
- B. Carbon = 0; Nitrogen = -1; Carbon = 0 and Oxygen = -1
- C. Carbon = 0; Nitrogen = 0; Carbon = 0 and Oxygen = -1
- D. Carbon = 0; Nitrogen = +1; Carbon = 0 and Oxygen = -1

16. Which molecules contain both covalent and ionic bonds?

CH ₃ OH
I

Na₂CO₃ II NH₄Cl III NaCl IV

- A. I and II
- B. II and IV
- C. I, II and IV
- D. II and III

17. Which of the following compounds do not contain an SP3 hybridized oxygen atom?

- A. Ketones
- B. Alcohols
- C. Ethers
- D. Esters
- E. Water

18. Capsaicin is the spicy component of hot chilli peppers, and its structure is given below. What is the correct molecular formula for this interesting molecule?

- A. C₁₈H₂₇NO₃
- B. C₁₈H₂₅NO₃
- C. C₁₈H₃₀NO₃
- D. C₁₈H₂₈NO₃

19. Which of the following has the largest radius?

- A. Se²-
- B. Kr
- C. Rb+
- D. Br-

20. The IUPAC name of the compound below is:

- A. 2,6-dimethyl-4-isopropyldecane
- B. 2,6-dimethyl-2-chloro-4-isopropyloctane
- C. 2,6-dimethyl-4-(1-methylpropyl)decane
- D. 2,6-dimethyl-4-(3-methylpropyl)decane

END OF SECTION A

SECTION B: [40	MARKS]
QUESTION 2	[12]
i) Find the oxidation numbers of the indicated atom in each of the following:	
a. S in SO ₄ ² -	(2)
b. N in NO ₂	(2)
c. Cr in K ₂ Cr ₂ O ₇	(2)
ii) Balance the following half reactions:	
a. $CrO_4^{2-}(aq) \rightarrow Cr(OH)_3(s)$ in basic medium	(3)
b. $HNO_2(aq) \rightarrow NH_4^+(aq)$ in acidic medium	(3)
QUESTION 3	[8]
A buffer solution contains 0.25 M NH $_3$ (Kb = 1.8 x 10 $^{-5}$) and 0.40 M NH $_4$ Cl. Calculate the of the solution.	∌ pH
QUESTION 4:	[10]
Methyl nitrate, CH_3NO_3 , is used a rocket propellant. One of the nitrogen-to-oxygen length is 136 pm and the other two are 126pm.	bond
a. Draw the most stable Lewis structure of the molecule.	(3)
b. What is the hybridization state of the carbon atom and the nitrogen atom based Valence bond Theory?	d on (4)
c. Which set of hybrid orbitals are used to form the C-N bond?	(2)
d. What is the bond angle between the O-N-O bonds?	(1)

a. Enalapril is currently in clinical trials for congestive heart failure, and its structure is given below.

Enalapril

- i. What is the correct molecular formula for this interesting antihypertensive agent?
- ii. Identify the functional groups present in Enalapril. (5)
- b. With reference to compound **W** drawn below, identify each of the compounds **X Z** as an isomer, resonance structure or neither. (3)

i.

General Chemistry 1B (GNC502S)

iii.

END OF QUESTION PAPER

USEFUL CONSTANTS:

Gas constant, $R = 8.3145 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$

= $0.083145 \text{ dm}^3 \cdot \text{bar} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$

= 0.08206 L atm mol⁻¹· K⁻¹

 $1 \text{ Pa} \cdot \text{m}^3 = 1 \text{ kPa.L} = 1 \text{ N} \cdot \text{m} = 1 \text{ J}$

1 atm = 101 325 Pa = 760 mmHg = 760 torr

Avogadro's Number, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Planck's constant, $h = 6.626 \times 10^{-34} \text{ Js}$

Speed of light, $c = 2.998 \times 10^8 \text{ ms}^{-1}$

Faculty of Health, Natural Resources and Applied Sciences

School of Natural and Applied Sciences

Department of Biology, Chemistry and Physics 13 Jackson Kaujeua Street T: +264 61 207 2012
Private Bag 13388 F: +264 61 207 9012
Windhoek E: dbcp@nust.na
NAMIBIA W: www.nust.na

	Chemist	iy anu i ny	2172															
hydrogen																		helium
1 .1.																		2
H																		He
1.0079														Y				4.0026
lithium	beryllium												boron	carbon	nitrogen	oxygen	fluorine	neon
3	4												5	6		8	9	10
Li	Be												В	C	N	O	F	Ne
6.941	9.0122												10.811	12.011	14.007	15.999	18.998	20.180
sodium 11	magnesium 12												aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
																		2.00
Na	Mg												Al	Si	P	S	CI	Ar
22.990	24.305												26.982	28.086	30.974	32.065	35.453	39.948
potassium 19	calcium 20		scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
1 13	20	1							10000								100,000	
	^-	1	0-	7:	\ /	C	B 8		0-	AI:	C	7.0		-	A -	0-	D	1/
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
39.098 rubidium	40.078 strontium		44.956 yttrium	47.867 zirconium	50.942 niobium	51.996 molybdenum	54.938 technetium	55.845 ruthenium	58.933 rhodium	58.693 palladium	63.546 silver	65.39 cadmium	69.723 indium	72.61 tin	74.922 antimony	78.96 tellurium	79.904 iodine	83.80 xenon
39.098 rubidium 37	40.078 strontium 38		44.956 yttrium 39	47.867 zirconium 40	50.942 niobium 41	51.996 molybdenum 42	54.938 technetium 43	55.845 ruthenium 44	58.933 rhodium 45	58.693 palladium 46	63.546 silver 47	65.39 cadmium 48	69.723 indium 49	72.61 tin 50	74.922 antimony 51	78.96 tellurium 52	79.904	83.80 xenon 54
39.098 rubidium	40.078 strontium 38 Sr		44.956 yttrium	47.867 zirconium 40 Zr	50.942 niobium 41 Nb	51.996 molybdenum 42 Mo	54.938 technetium	ruthenium 44 Ru	58.933 rhodium	58.693 palladium 46 Pd	63.546 silver	65.39 cadmium	69.723 indium	72.61 tin 50 Sn	74.922 antimony 51 Sb	78.96 tellurium 52 Te	79.904 iodine	83.80 xenon 54 Xe
39.098 rubidium 37 Rb 85.468	40.078 strontium 38 Sr 87.62		44.956 yttrium 39 Y 88.906	47.867 zirconium 40 Zr 91.224	50.942 niobium 41 Nb 92.906	51.996 molybdenum 42 Mo 95.94	54.938 technetium 43 TC [98]	55.845 ruthenium 44 Ru 101.07	58.933 rhodium 45 Rh 102.91	58.693 palladium 46 Pd 106.42	63.546 silver 47 Ag 107.87	65.39 cadmium 48 Cd 112.41	69.723 indium 49 In	72.61 tin 50 Sn 118.71	74.922 antimony 51 Sb 121.76	78.96 tellurium 52 Te 127.60	79.904 iodine 53	83.80 xenon 54 Xe 131.29
39.098 rubidium 37 Rb 85.468 caesium	strontium 38 Sr 87.62 barium	57-70	44.956 yttrium 39 Y 88.906 lutetium	47.867 zirconium 40 Zr 91.224 hafnium	50.942 niobium 41 Nb 92.906 tantalum	51.996 molybdenum 42 Mo 95.94 tungsten	54.938 technetium 43 TC [98] rhenium	ruthenium 44 Ru 101.07 osmium	58.933 rhodium 45 Rh 102.91 iridium	palladium 46 Pd 106.42 platinum	63.546 silver 47 Ag 107.87 gold	65.39 cadmium 48 Cd 112.41 mercury	69.723 indium 49 In 114.82 thallium	72.61 tin 50 Sn 118.71 lead	74.922 antimony 51 Sb 121.76 bismuth	78.96 tellurium 52 Te 127.60 polonium	79.904 iodine 53 1 126.90 astatine	83.80 xenon 54 Xe 131.29 radon
39.098 rubidium 37 Rb 85.468 caesium 55	strontium 38 Sr 87.62 barium 56	57-70 ×	44.956 yttrium 39 Y 88.906 lutetium 71	47.867 zirconium 40 Zr 91.224 hafnlum 72	50.942 niobium 41 Nb 92.906 tantalum 73	51.996 molybdenum 42 Mo 95.94 tungsten 74	54.938 technetium 43 TC [98] rhenium 75	55.845 ruthenium 44 Ru 101.07 osmium 76	58.933 rhodium 45 Rh 102.91 iridium 77	58.693 palladium 46 Pd 106.42 platinum 78	63.546 silver 47 Ag 107.87 gold 79	65.39 cadmium 48 Cd 112.41 mercury 80	69.723 indium 49 In	72.61 tin 50 Sn 118.71 lead 82	74.922 antimony 51 Sb 121.76 bismuth 83	78.96 tellurium 52 Te 127.60 polonium 84	79.904 iodine 53 1 126.90 astatine 85	83.80 xenon 54 Xe 131.29 radon 86
39.098 rubidium 37 Rb 85.468 caesium 55 Cs	strontium 38 Sr 87.62 barium 56 Ba	57-70 X	44.956 yttrium 39 Y 88.906 lutetium 71 Lu	47.867 zirconium 40 Zr 91.224 hafnium 72 Hf	50.942 nlobium 41 Nb 92.906 tantalum 73 Ta	51.996 molybdenum 42 Mo 95.94 tungsten 74	54.938 technetium 43 Tc [98] rhenium 75 Re	ruthenium 44 Ru 101.07 osmium 76 Os	58.933 rhodium 45 Rh 102.91 iridium 77	palladium 46 Pd 106.42 platinum 78	63.546 silver 47 Ag 107.87 gold 79 Au	cadmium 48 Cd 112.41 mercury 80	69.723 indium 49 In 114.82 thallium 81	72.61 lin 50 Sn 118.71 lead 82 Pb	74.922 antimony 51 Sb 121.76 bismuth 83 Bi	78.96 tellurium 52 Te 127.60 polonium 84 Po	79.904 iodine 53 1 126.90 astatine 85 At	83.80 xenon 54 Xe 131.29 radon 86 Rn
39.098 rubidium 37 Rb 85.468 caesium 55 Cs 132.91	40.078 strontium 38 Sr 87.62 barium 56 Ba 137.33		44.956 yttrium 39 Y 88.906 lutetium 71 Lu 174.97	47.867 zirconium 40 Zr 91.224 hafnium 72 Hf 178.49	50.942 niobium 41 Nb 92.906 tantalum 73 Ta 180.95	51.996 molybdenum 42 Mo 95.94 tungsten 74 W 183.84	54.938 technetium 43 TC [98] rhenium 75 Re 186.21	755.845 ruthenium 44 Ru 101.07 osmium 76 Os 190.23	58.933 rhodium 45 Rh 102.91 iridium 77 Ir 192.22	58.693 palladium 46 Pd 106.42 platinum 78 Pt 195.08	63.546 silver 47 Ag 107.87 gold 79 Au 196.97	65.39 cadmium 48 Cd 112.41 mercury 80 Hg 200.59	69.723 indium 49 In 114.82 thallium 81	72.61 lin 50 Sn 118.71 lead 82 Pb 207.2	74.922 antimony 51 Sb 121.76 bismuth 83	78.96 tellurium 52 Te 127.60 polonium 84	79.904 iodine 53 1 126.90 astatine 85	83.80 xenon 54 Xe 131.29 radon 86
39.098 rubidium 37 Rb 85.468 caesium 55 Cs	strontium 38 Sr 87.62 barium 56 Ba	*	44,956 yttrium 39 Y 88,906 lutetium 71 Lu 174,97 lawrendum	47.867 zirconium 40 Zr 91.224 hafnium 72 Hf	50.942 nlobium 41 Nb 92.906 tantalum 73 Ta	51.996 molybdenum 42 Mo 95.94 tungsten 74	54.938 technetium 43 Tc [98] rhenium 75 Re	ruthenium 44 Ru 101.07 osmium 76 Os	58.933 rhodium 45 Rh 102.91 iridium 77	palladium 46 Pd 106.42 platinum 78	63.546 silver 47 Ag 107.87 gold 79 Au	cadmium 48 Cd 112.41 mercury 80	69.723 indium 49 In 114.82 thallium 81	72.61 lin 50 Sn 118.71 lead 82 Pb	74.922 antimony 51 Sb 121.76 bismuth 83 Bi	78.96 tellurium 52 Te 127.60 polonium 84 Po	79.904 iodine 53 1 126.90 astatine 85 At	83.80 xenon 54 Xe 131.29 radon 86 Rn
39.098 rubidium 37 Rb 85.468 caesium 55 Cs 132.91 francium 87	40.078 strontium 38 Sr 87.62 barium 56 Ba 137.33 radium 88	X 89-102	44,956 yttrium 39 Y 88,906 lutetium 71 Lu 174,97 lawrencium 103	47.867 zirconium 40 Zr 91.224 hafnium 72 Hf 178.49 rutherfordium 104	50.942 niobium 41 Nb 92.906 tantalum 73 Ta 180.95 dubnium 105	51.996 molybdenum 42 Mo 95.94 tungsten 74 W 183.84 seaborgium 106	technetium 43 Tc [98] rhenium 75 Re 186.21 bohrium 107	55.845 ruthenium 44 Ru 101.07 osmium 76 OS 190.23 hassium 108	58.933 rhodium 45 Rh 102.91 iridium 77 Ir 192.22 meilnerium 109	58.693 palladium 46 Pd 106.42 platinum 78 Pt 195.08 ununnilium 110	63.546 silver 47 Ag 107.87 gold 79 Au 196.97 unununium 111	65.39 cadmium 48 Cd 112.41 mercury 80 Hg 200.59 ununbium 112	69.723 indium 49 In 114.82 thallium 81	72.61 lin 50 Sn 118.71 lead 82 Pb 207.2 ununquadium 114	74.922 antimony 51 Sb 121.76 bismuth 83 Bi	78.96 tellurium 52 Te 127.60 polonium 84 Po	79.904 iodine 53 1 126.90 astatine 85 At	83.80 xenon 54 Xe 131.29 radon 86 Rn
39.098 rubidium 37 Rb 85.468 caesium 55 Cs 132.91 francium	40.078 strontium 38 Sr 87.62 barium 56 Ba 137.33 radium	*	44,956 yttrium 39 Y 88,906 lutetium 71 Lu 174,97 lawrendum	47.867 zirconium 40 Zr 91.224 hafnium 72 Hf 178.49 rutherfordium	50.942 niobium 41 Nb 92.906 tantalum 73 Ta 180.95 dubnium	51.996 molybdenum 42 Mo 95.94 tungsten 74 W 183.84 seaborgium	technetium 43 Tc [98] rhenium 75 Re 186.21 bohrium	ruthenium 44 Ru 101.07 osmium 76 Os 190.23 hassium	58.933 rhodium 45 Rh 102.91 iridium 77 Ir 192.22 meilnerium	58.693 palladium 46 Pd 106.42 platinum 78 Pt 195.08 ununnilium 110	63.546 silver 47 Ag 107.87 gold 79 Au 196.97 unununium	65.39 cadmium 48 Cd 112.41 mercury 80 Hg 200.59 ununbium 112	69.723 indium 49 In 114.82 thallium 81	72.61 lin 50 Sn 118.71 lead 82 Pb 207.2 ununquadium	74.922 antimony 51 Sb 121.76 bismuth 83 Bi	78.96 tellurium 52 Te 127.60 polonium 84 Po	79.904 iodine 53 1 126.90 astatine 85 At	83.80 xenon 54 Xe 131.29 radon 86 Rn

*Lanthanide series

* * Actinide series

lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]