Faculty of Health, Natural **Resources and Applied** Sciences School of Natural and Applied Sciences Department of Biology, Chemistry and Physics 13 Jackson Kaujeua Street T: +264 61 207 2012 Private Bag 13388 F: +264 61 207 9012 Windhoek E: dbcp@nust.na NAMIBIA W: www.nust.na | QUALIFICATION: BACHELOR OF SCIENCE | | |------------------------------------|----------------------| | QUALIFICATION CODE: 07BOSC | LEVEL: 5 | | COURSE: GENERAL CHEMISTRY 1B | COURSE CODE: GNC502S | | DATE: JANUARY 2025 | SESSION: 1 | | DURATION: 3 HOURS | MARKS: 100 | SECOND OPPORTUNITY / SUPPLEMENTARY: QUESTION PAPER **EXAMINER:** **DR MARIUS MUTORWA** **MODERATOR:** **PROF LAMECH MWAPAGHA** #### **INSTRUCTIONS:** - 1. Answer ALL the questions. - 2. Write clearly and neatly. - 3. Number the answers clearly - 4. All written work must be done in blue or black ink and sketches can be done in pencil. - 5. No books, notes and other additional aids are allowed. ### **PERMISSIBLE MATERIALS** Non-programmable calculators #### **ATTACHMENTS** - 1. Useful Constants Data - 2. Periodic Table This paper consists of twelve (12) pages including this front page. SECTION A: [60 MARKS] #### **QUESTION 1: MULTIPLE CHOICE QUESTIONS** There are 20 multiple choice questions in this section. Each question carries 3 marks. Answer ALL questions by selecting the letter of the correct answer, even if you think there is another possible answer that is not given. - 1. NaOH + HCl → - A. $Na(OH)_2 + H_2$ - B. NaCl + H₂ - C. NaCl + H₂O - D. NaCl + $H_2 + O_2$ - 2. Phosphoric acid has the formula: - A. H₂PO₃ - B. H₂PO₄ - C. H₃PO₄ - D. H₃PO₃ - 3. Which of the following could be added to a solution of sodium acetate (CH₃COONa) to produce a buffer? - A. Potassium acetate - B. Sodium chloride - C. Acetic acid - D. None of the above - 4. In a reaction between CuSO₄(s) and Zn(s): - A. Zinc experiences an increase in oxidation state - B. Cu undergoes oxidation - C. Zn undergoes reduction - D. All of the above 5. Ascorbic acid ($C_6H_8O_6$) is a common antioxidant that protects our bodies against radicals. In the redox equation below that occurs in our stomach, which of the following pairs identifies the reducing and oxidizing agents, respectively? $$C_6H_8O_6 + H^+ + 2NO_2^- \rightarrow C_6H_6O_6 + 2H_2O + 2NO$$ - A. C₆H₈O₆ & NO₂ - B, H+ & NO₂ - C. C₆H₈O₆ & H⁺ - D. H+ & NO₂ - 6. Which of the following half reactions are balanced? - A. $CIO^{-} + H_{2}O + e^{-} \rightarrow Cl_{2} + 2OH^{-}$ - B. $2 \text{ ClO}^- + \text{H}_2\text{O} + 2\text{e}^- \rightarrow \text{Cl}_2 + 3\text{OH}^-$ - C. $2 \text{ ClO}^- + 2 \text{ H}_2\text{O} + 2 \text{e}^- \rightarrow \text{Cl}_2 + 4 \text{OH}^-$ - D. $CIO^{-} + H_2O + e^{-} \rightarrow Cl_2 + 2OH^{-}$ - 7. What is the order of the reaction with respect to NO? - A. 0 - B. 1 - C. -1 - D. 2 - 8. If the concentration of NO is doubled and that of and H2 is constant, the rate of the reaction would: - A. Increase two fold - B. Increase four fold - C. Decrease two fold - D. Decrease four fold 9. The reaction of elemental chlorine with ozone occurs by the two-step process shown below: I. Cl + O₃ $$\rightarrow$$ ClO + O₂ II. CIO + O $$\rightarrow$$ CI + O₂ Which of the statements below is true regarding this process? - A. Cl is a catalyst - B. O₃ is a catalyst - C. ClO is a catalyst - D. O₂ is an intermediate - 10. For the reaction: $$2NaHCO_3(s) \Leftrightarrow Na_2CO_3(s) + CO_2(g) + H_2O(g)$$ Which one of the following is the correct expression for K_c? - A. $Kc = [CO_2]$ - B. $Kc = [CO_2][H_2O]$ - C. $Kc = [CO_2][H_2O][Na_2CO_3]/[NaHCO_3]_2$ - D. Kc = [CO₂][Na₂CO₃]/[NaHCO₃]₂ - 11. For which of the following reactions does $K_c = K_p$ at 25°C? - A. $2NH_3(g) + CO_2(g) \Leftrightarrow N_2CH_4O(s) + H_2O(g)$ - B. $2NBr_3(s) \Leftrightarrow N_2(g) + 3Br_2(g)$ - C. $2KClO_3(s) \Leftrightarrow 2KCl(s) + 3O_2(g)$ - D. $CuO(s) + H_2(g) \Leftrightarrow Cu(I) + H_2O(g)$ - 12. Which of the following statements correctly describe the basic concepts and uses of VSEPR theory: - I) The VSEPR theory is used for estimating bond angles. - II) The VSEPR theory is used for predicting electronegativities. - III) The VSEPR theory is helpful in predicting polarity. - IV) The VSEPR theory states that electron pairs repel each other. - V) The VSEPR theory uses valence electron counting for structure prediction. - A. I), II), III), IV) - B. I), II), IV), V) - C. I), II), III), V) - D. I), III), IV), V) - 13. What is the correct molecular geometry for SeBr₃+? - A. trigonal pyramidal - B. tetrahedral - C. trigonal planar - D. T-shaped - 14. Which is NOT a valid resonance structure for the anion in the box below? 15. In the following compound, indicate the formal charge on all atoms except hydrogen, from left to right. - A. Carbon = 0; Nitrogen = -1; Carbon = +1 and Oxygen = 0 - B. Carbon = 0; Nitrogen = -1; Carbon = 0 and Oxygen = -1 - C. Carbon = 0; Nitrogen = 0; Carbon = 0 and Oxygen = -1 - D. Carbon = 0; Nitrogen = +1; Carbon = 0 and Oxygen = -1 16. Which molecules contain both covalent and ionic bonds? | CH ₃ OH | |--------------------| | I | Na₂CO₃ II NH₄Cl III NaCl IV - A. I and II - B. II and IV - C. I, II and IV - D. II and III 17. Which of the following compounds do not contain an SP3 hybridized oxygen atom? - A. Ketones - B. Alcohols - C. Ethers - D. Esters - E. Water 18. Capsaicin is the spicy component of hot chilli peppers, and its structure is given below. What is the correct molecular formula for this interesting molecule? - A. C₁₈H₂₇NO₃ - B. C₁₈H₂₅NO₃ - C. C₁₈H₃₀NO₃ - D. C₁₈H₂₈NO₃ 19. Which of the following has the largest radius? - A. Se²- - B. Kr - C. Rb+ - D. Br- 20. The IUPAC name of the compound below is: - A. 2,6-dimethyl-4-isopropyldecane - B. 2,6-dimethyl-2-chloro-4-isopropyloctane - C. 2,6-dimethyl-4-(1-methylpropyl)decane - D. 2,6-dimethyl-4-(3-methylpropyl)decane **END OF SECTION A** | SECTION B: [40 | MARKS] | |---|-------------| | QUESTION 2 | [12] | | i) Find the oxidation numbers of the indicated atom in each of the following: | | | a. S in SO ₄ ² - | (2) | | b. N in NO ₂ | (2) | | c. Cr in K ₂ Cr ₂ O ₇ | (2) | | ii) Balance the following half reactions: | | | a. $CrO_4^{2-}(aq) \rightarrow Cr(OH)_3(s)$ in basic medium | (3) | | b. $HNO_2(aq) \rightarrow NH_4^+(aq)$ in acidic medium | (3) | | QUESTION 3 | [8] | | A buffer solution contains 0.25 M NH $_3$ (Kb = 1.8 x 10 $^{-5}$) and 0.40 M NH $_4$ Cl. Calculate the of the solution. | ∌ pH | | QUESTION 4: | [10] | | Methyl nitrate, CH_3NO_3 , is used a rocket propellant. One of the nitrogen-to-oxygen length is 136 pm and the other two are 126pm. | bond | | a. Draw the most stable Lewis structure of the molecule. | (3) | | b. What is the hybridization state of the carbon atom and the nitrogen atom based
Valence bond Theory? | d on
(4) | | c. Which set of hybrid orbitals are used to form the C-N bond? | (2) | | d. What is the bond angle between the O-N-O bonds? | (1) | a. Enalapril is currently in clinical trials for congestive heart failure, and its structure is given below. ## Enalapril - i. What is the correct molecular formula for this interesting antihypertensive agent? - ii. Identify the functional groups present in Enalapril. (5) - b. With reference to compound **W** drawn below, identify each of the compounds **X Z** as an isomer, resonance structure or neither. (3) i. General Chemistry 1B (GNC502S) ## iii. # **END OF QUESTION PAPER** ## **USEFUL CONSTANTS:** Gas constant, $R = 8.3145 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ = $0.083145 \text{ dm}^3 \cdot \text{bar} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ = 0.08206 L atm mol⁻¹· K⁻¹ $1 \text{ Pa} \cdot \text{m}^3 = 1 \text{ kPa.L} = 1 \text{ N} \cdot \text{m} = 1 \text{ J}$ 1 atm = 101 325 Pa = 760 mmHg = 760 torr Avogadro's Number, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ Planck's constant, $h = 6.626 \times 10^{-34} \text{ Js}$ Speed of light, $c = 2.998 \times 10^8 \text{ ms}^{-1}$ Faculty of Health, Natural Resources and Applied Sciences School of Natural and Applied Sciences Department of Biology, Chemistry and Physics 13 Jackson Kaujeua Street T: +264 61 207 2012 Private Bag 13388 F: +264 61 207 9012 Windhoek E: dbcp@nust.na NAMIBIA W: www.nust.na | | Chemist | iy anu i ny | 2172 | | | | | | | | | | | | | | | | |---|--|------------------------|---|--|---|--|---|---|---|--|--|---|--|--|---|---|---|---| | hydrogen | | | | | | | | | | | | | | | | | | helium | | 1 .1. | | | | | | | | | | | | | | | | | | 2 | | H | | | | | | | | | | | | | | | | | | He | | 1.0079 | | | | | | | | | | | | | | Y | | | | 4.0026 | | lithium | beryllium | | | | | | | | | | | | boron | carbon | nitrogen | oxygen | fluorine | neon | | 3 | 4 | | | | | | | | | | | | 5 | 6 | | 8 | 9 | 10 | | Li | Be | | | | | | | | | | | | В | C | N | O | F | Ne | | 6.941 | 9.0122 | | | | | | | | | | | | 10.811 | 12.011 | 14.007 | 15.999 | 18.998 | 20.180 | | sodium
11 | magnesium
12 | | | | | | | | | | | | aluminium
13 | silicon
14 | phosphorus
15 | sulfur
16 | chlorine
17 | argon
18 | 2.00 | | Na | Mg | | | | | | | | | | | | Al | Si | P | S | CI | Ar | | 22.990 | 24.305 | | | | | | | | | | | | 26.982 | 28.086 | 30.974 | 32.065 | 35.453 | 39.948 | | potassium
19 | calcium
20 | | scandium
21 | titanium
22 | vanadium
23 | chromium
24 | manganese
25 | iron
26 | cobalt
27 | nickel
28 | copper
29 | zinc
30 | gallium
31 | germanium
32 | arsenic
33 | selenium
34 | bromine
35 | krypton
36 | | 1 13 | 20 | 1 | | | | | | | 10000 | | | | | | | | 100,000 | | | | ^- | 1 | 0- | 7: | \ / | C | B 8 | | 0- | AI: | C | 7.0 | | - | A - | 0- | D | 1/ | | K | Ca | | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | | 39.098 | 40.078 | | 44.956 | 47.867 | 50.942 | 51.996 | 54.938 | 55.845 | 58.933 | 58.693 | 63.546 | 65.39 | 69.723 | 72.61 | 74.922 | 78.96 | 79.904 | 83.80 | | 39.098
rubidium | 40.078
strontium | | 44.956
yttrium | 47.867
zirconium | 50.942
niobium | 51.996
molybdenum | 54.938
technetium | 55.845
ruthenium | 58.933
rhodium | 58.693
palladium | 63.546
silver | 65.39
cadmium | 69.723
indium | 72.61
tin | 74.922
antimony | 78.96
tellurium | 79.904
iodine | 83.80
xenon | | 39.098
rubidium
37 | 40.078
strontium
38 | | 44.956
yttrium
39 | 47.867
zirconium
40 | 50.942
niobium
41 | 51.996
molybdenum
42 | 54.938
technetium
43 | 55.845
ruthenium
44 | 58.933
rhodium
45 | 58.693
palladium
46 | 63.546
silver
47 | 65.39
cadmium
48 | 69.723
indium
49 | 72.61
tin
50 | 74.922
antimony
51 | 78.96
tellurium
52 | 79.904 | 83.80
xenon
54 | | 39.098
rubidium | 40.078
strontium
38
Sr | | 44.956
yttrium | 47.867
zirconium
40
Zr | 50.942
niobium
41
Nb | 51.996
molybdenum
42
Mo | 54.938
technetium | ruthenium
44
Ru | 58.933
rhodium | 58.693
palladium
46
Pd | 63.546
silver | 65.39
cadmium | 69.723
indium | 72.61
tin
50
Sn | 74.922
antimony
51
Sb | 78.96
tellurium
52
Te | 79.904
iodine | 83.80
xenon
54
Xe | | 39.098
rubidium
37
Rb
85.468 | 40.078
strontium
38
Sr
87.62 | | 44.956
yttrium
39
Y
88.906 | 47.867
zirconium
40
Zr
91.224 | 50.942
niobium
41
Nb
92.906 | 51.996
molybdenum
42
Mo
95.94 | 54.938
technetium
43
TC
[98] | 55.845
ruthenium
44
Ru
101.07 | 58.933
rhodium
45
Rh
102.91 | 58.693
palladium
46
Pd
106.42 | 63.546
silver
47
Ag
107.87 | 65.39
cadmium
48
Cd
112.41 | 69.723
indium
49
In | 72.61
tin
50
Sn
118.71 | 74.922
antimony
51
Sb
121.76 | 78.96
tellurium
52
Te
127.60 | 79.904
iodine
53 | 83.80
xenon
54
Xe
131.29 | | 39.098
rubidium
37
Rb
85.468
caesium | strontium
38
Sr
87.62
barium | 57-70 | 44.956
yttrium
39
Y
88.906
lutetium | 47.867 zirconium 40 Zr 91.224 hafnium | 50.942
niobium
41
Nb
92.906
tantalum | 51.996
molybdenum
42
Mo
95.94
tungsten | 54.938
technetium
43
TC
[98]
rhenium | ruthenium
44
Ru
101.07
osmium | 58.933
rhodium
45
Rh
102.91
iridium | palladium
46
Pd
106.42
platinum | 63.546
silver
47
Ag
107.87
gold | 65.39
cadmium
48
Cd
112.41
mercury | 69.723
indium
49
In
114.82
thallium | 72.61
tin
50
Sn
118.71
lead | 74.922 antimony 51 Sb 121.76 bismuth | 78.96 tellurium 52 Te 127.60 polonium | 79.904 iodine 53 1 126.90 astatine | 83.80
xenon
54
Xe
131.29
radon | | 39.098
rubidium
37
Rb
85.468
caesium
55 | strontium
38
Sr
87.62
barium
56 | 57-70
× | 44.956
yttrium
39
Y
88.906
lutetium
71 | 47.867 zirconium 40 Zr 91.224 hafnlum 72 | 50.942
niobium
41
Nb
92.906
tantalum
73 | 51.996
molybdenum
42
Mo
95.94
tungsten
74 | 54.938
technetium
43
TC
[98]
rhenium
75 | 55.845
ruthenium
44
Ru
101.07
osmium
76 | 58.933
rhodium
45
Rh
102.91
iridium
77 | 58.693 palladium 46 Pd 106.42 platinum 78 | 63.546
silver
47
Ag
107.87
gold
79 | 65.39
cadmium
48
Cd
112.41
mercury
80 | 69.723
indium
49
In | 72.61
tin
50
Sn
118.71
lead
82 | 74.922 antimony 51 Sb 121.76 bismuth 83 | 78.96
tellurium
52
Te
127.60
polonium
84 | 79.904
iodine
53
1
126.90
astatine
85 | 83.80
xenon
54
Xe
131.29
radon
86 | | 39.098
rubidium
37
Rb
85.468
caesium
55
Cs | strontium 38 Sr 87.62 barium 56 Ba | 57-70
X | 44.956 yttrium 39 Y 88.906 lutetium 71 Lu | 47.867 zirconium 40 Zr 91.224 hafnium 72 Hf | 50.942
nlobium
41
Nb
92.906
tantalum
73
Ta | 51.996
molybdenum
42
Mo
95.94
tungsten
74 | 54.938 technetium 43 Tc [98] rhenium 75 Re | ruthenium 44 Ru 101.07 osmium 76 Os | 58.933
rhodium
45
Rh
102.91
iridium
77 | palladium
46
Pd
106.42
platinum
78 | 63.546
silver
47
Ag
107.87
gold
79
Au | cadmium
48
Cd
112.41
mercury
80 | 69.723
indium
49
In
114.82
thallium
81 | 72.61
lin
50
Sn
118.71
lead
82
Pb | 74.922 antimony 51 Sb 121.76 bismuth 83 Bi | 78.96 tellurium 52 Te 127.60 polonium 84 Po | 79.904 iodine 53 1 126.90 astatine 85 At | 83.80
xenon
54
Xe
131.29
radon
86
Rn | | 39.098
rubidium
37
Rb
85.468
caesium
55
Cs
132.91 | 40.078
strontium
38
Sr
87.62
barium
56
Ba
137.33 | | 44.956 yttrium 39 Y 88.906 lutetium 71 Lu 174.97 | 47.867 zirconium 40 Zr 91.224 hafnium 72 Hf 178.49 | 50.942
niobium
41
Nb
92.906
tantalum
73
Ta
180.95 | 51.996
molybdenum
42
Mo
95.94
tungsten
74
W
183.84 | 54.938 technetium 43 TC [98] rhenium 75 Re 186.21 | 755.845
ruthenium
44
Ru
101.07
osmium
76
Os
190.23 | 58.933 rhodium 45 Rh 102.91 iridium 77 Ir 192.22 | 58.693 palladium 46 Pd 106.42 platinum 78 Pt 195.08 | 63.546
silver
47
Ag
107.87
gold
79
Au
196.97 | 65.39
cadmium
48
Cd
112.41
mercury
80
Hg
200.59 | 69.723
indium
49
In
114.82
thallium
81 | 72.61 lin 50 Sn 118.71 lead 82 Pb 207.2 | 74.922 antimony 51 Sb 121.76 bismuth 83 | 78.96
tellurium
52
Te
127.60
polonium
84 | 79.904
iodine
53
1
126.90
astatine
85 | 83.80
xenon
54
Xe
131.29
radon
86 | | 39.098
rubidium
37
Rb
85.468
caesium
55
Cs | strontium 38 Sr 87.62 barium 56 Ba | * | 44,956 yttrium 39 Y 88,906 lutetium 71 Lu 174,97 lawrendum | 47.867 zirconium 40 Zr 91.224 hafnium 72 Hf | 50.942
nlobium
41
Nb
92.906
tantalum
73
Ta | 51.996
molybdenum
42
Mo
95.94
tungsten
74 | 54.938 technetium 43 Tc [98] rhenium 75 Re | ruthenium 44 Ru 101.07 osmium 76 Os | 58.933
rhodium
45
Rh
102.91
iridium
77 | palladium
46
Pd
106.42
platinum
78 | 63.546
silver
47
Ag
107.87
gold
79
Au | cadmium
48
Cd
112.41
mercury
80 | 69.723
indium
49
In
114.82
thallium
81 | 72.61
lin
50
Sn
118.71
lead
82
Pb | 74.922 antimony 51 Sb 121.76 bismuth 83 Bi | 78.96 tellurium 52 Te 127.60 polonium 84 Po | 79.904 iodine 53 1 126.90 astatine 85 At | 83.80
xenon
54
Xe
131.29
radon
86
Rn | | 39.098 rubidium 37 Rb 85.468 caesium 55 Cs 132.91 francium 87 | 40.078
strontium
38
Sr
87.62
barium
56
Ba
137.33
radium
88 | X
89-102 | 44,956 yttrium 39 Y 88,906 lutetium 71 Lu 174,97 lawrencium 103 | 47.867 zirconium 40 Zr 91.224 hafnium 72 Hf 178.49 rutherfordium 104 | 50.942
niobium
41
Nb
92.906
tantalum
73
Ta
180.95
dubnium
105 | 51.996 molybdenum 42 Mo 95.94 tungsten 74 W 183.84 seaborgium 106 | technetium 43 Tc [98] rhenium 75 Re 186.21 bohrium 107 | 55.845
ruthenium
44
Ru
101.07
osmium
76
OS
190.23
hassium
108 | 58.933 rhodium 45 Rh 102.91 iridium 77 Ir 192.22 meilnerium 109 | 58.693 palladium 46 Pd 106.42 platinum 78 Pt 195.08 ununnilium 110 | 63.546
silver
47
Ag
107.87
gold
79
Au
196.97
unununium
111 | 65.39 cadmium 48 Cd 112.41 mercury 80 Hg 200.59 ununbium 112 | 69.723
indium
49
In
114.82
thallium
81 | 72.61 lin 50 Sn 118.71 lead 82 Pb 207.2 ununquadium 114 | 74.922 antimony 51 Sb 121.76 bismuth 83 Bi | 78.96 tellurium 52 Te 127.60 polonium 84 Po | 79.904 iodine 53 1 126.90 astatine 85 At | 83.80
xenon
54
Xe
131.29
radon
86
Rn | | 39.098
rubidium
37
Rb
85.468
caesium
55
Cs
132.91
francium | 40.078
strontium
38
Sr
87.62
barium
56
Ba
137.33
radium | * | 44,956 yttrium 39 Y 88,906 lutetium 71 Lu 174,97 lawrendum | 47.867 zirconium 40 Zr 91.224 hafnium 72 Hf 178.49 rutherfordium | 50.942
niobium
41
Nb
92.906
tantalum
73
Ta
180.95
dubnium | 51.996 molybdenum 42 Mo 95.94 tungsten 74 W 183.84 seaborgium | technetium 43 Tc [98] rhenium 75 Re 186.21 bohrium | ruthenium 44 Ru 101.07 osmium 76 Os 190.23 hassium | 58.933 rhodium 45 Rh 102.91 iridium 77 Ir 192.22 meilnerium | 58.693 palladium 46 Pd 106.42 platinum 78 Pt 195.08 ununnilium 110 | 63.546
silver
47
Ag
107.87
gold
79
Au
196.97
unununium | 65.39 cadmium 48 Cd 112.41 mercury 80 Hg 200.59 ununbium 112 | 69.723
indium
49
In
114.82
thallium
81 | 72.61 lin 50 Sn 118.71 lead 82 Pb 207.2 ununquadium | 74.922 antimony 51 Sb 121.76 bismuth 83 Bi | 78.96 tellurium 52 Te 127.60 polonium 84 Po | 79.904 iodine 53 1 126.90 astatine 85 At | 83.80
xenon
54
Xe
131.29
radon
86
Rn | *Lanthanide series * * Actinide series | lanthanum
57 | cerium
58 | praseodymium
59 | neodymium
60 | promethium
61 | samarium
62 | europium
63 | gadolinium
64 | terbium
65 | dysprosium
66 | holmium
67 | erbium
68 | thulium
69 | ytterbium
70 | |-----------------|--------------|--------------------|-----------------|------------------|----------------|----------------|------------------|---------------|------------------|---------------|--------------|---------------|-----------------| | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Но | Er | Tm | Yb | | 138.91 | 140.12 | 140.91 | 144.24 | [145] | 150.36 | 151.96 | 157.25 | 158.93 | 162.50 | 164.93 | 167.26 | 168.93 | 173.04 | | actinium | thorium | protactinium | uranium | neptunium | plutonium | americium | curium | berkelium | californium | einsteinium | fermium | mendelevium | nobelium | | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | | [227] | 232.04 | 231.04 | 238.03 | [237] | [244] | [243] | [247] | [247] | [251] | [252] | [257] | [258] | [259] |