

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES SCHOOL OF AGRICULTURE AND NATURAL RESOURCES SCIENCES DEPARTMENT OF AGRICULTURAL SCIENCES AND AGRIBUSINESS

QUALIFICATION: BACHELOR OF SCIEF	NCE IN AGRICULTURE	
QUALIFICATION CODE: 07BAGA LEVEL: 7		
COURSE CODE: MTA611S	COURSE NAME: MATHEMATICS FOR AGRIBUSINESS	
SESSION: JUNE 2024	PAPER: 1	
DURATION: 3 HOURS	MARKS: 100	

	FIRST OPPORTUNITY EXAMINATION QUESTION PAPER
EXAMINER(S)	MR MWALA LUBINDA
MODERATOR:	MR TEOFILUS SHIIMI

INSTRUCTIONS

- 1. Attempt all questions.
- 2. Write clearly and neatly.
- 3. Number the answers clearly & correctly.

PERMISSIBLE MATERIALS

- 1. All written work MUST be done in blue or black ink
- 2. Calculators allowed
- 3. The LAST PAGE has FORMULA
- 4. No books, notes or other additional aids are allowed

THIS QUESTION PAPER CONSISTS OF 6 PAGE (Including this front page)

.

•

		QUESTION ONE	[MARKS
a.	Given	a cost function $c(q) = (q-3)^{0.5}$, where $c(q)$ is the cost of production in	
	thousands of dollars and q is the quantity of output produced in thousands of units. Use		
	this information to answer the questions below.		
	i.	Find the $c(12)$.	(3)
	ii.	Find the domain value that corresponds to a range value of 4.	(3)
	iii.	Use interval or set notation to express the appropriate domain of the function.	(6)
b.	Consid	der an Agribusiness whose production process is represented by a univariate	
	quadr	atic function that exhibits a maximum output level and possesses roots at zero	
	and te	en units of the input variable. Based on this information, answer the questions	
	below	• · · ·	
	i.	Derive the mathematical expression of the Agribusiness's production function.	(3)
	ii.	Find the range and domain values at the maximum point of the production	
		function.	(5)
	iii.	Draw and label a graph that illustrates the production function. The graph must clearly show the roots, maxima , and y-intercept points of the production function.	(5)
TOTAL MARKS		[25]	

	QUESTION TWO	[MARKS]
a.	Given a multivariate production function $q(l,k) = 10l^{0.25}k^{0.75}$, find the following derivatives q_k , q_{kk} and q_{kl} .	(5)

b. Suppose an Agribusiness's total revenue function, r(q), and cost function, c(q), are represented as:

$$r(q) = 4000q - 33q^{2}$$

(8)
$$r(q) = 2q^{3} - 3q^{2} + 400q + 5000$$

Assuming q is the quantity of output, compute the profit-maximizing output level and maximum profit. Furthermore, proves that the profit-maximizing output level is the relative maximum. Show all your calculations.

- c. Using the Difference Quotient, find the first derivation of the function $g(q) = 2q^2$. (4) Show all the steps.
- d. Find the equation of a straight line that is tangent to the function:

$$f(q) = \ln \left(4q^2 + 4q - 3\right) \tag{8}$$

at x = 1.

c(q) $q^3 - 3q^2 + 400q$

[25]

.

, · ·

	QUESTION THREE	[MARKS]
a.	For each of the following cost functions, find $c'(q)$:	
	i. $c(q) = ln(3q^4)$	(3)
	ii. $c(q) = \frac{lnq}{q^2}$	(3)
	iii. $c(q) = q \ln(q^2 + 4)$	(4)
b.	Suppose a farmer faces the following cost function in his tomato production enterprise: $c(k,l) = 3k^3 + 1.5l^2 - 18kl + 17$ Where $c(k,l)$ is the multivariate production function with labour, l , and capital, k , as the main inputs. Based on this information find: (i) the critical points of the cost function; and (ii) for each critical point, determine if the function is at a relative maximum , relative minimum, inflection point , or saddle point .	(15)

TO	TAL	MA	RKS

[25]

[MARKS]

QUESTION FOUR

a. Solve the following indefinite integral:

$$\int 3t^2 (t^3 - 7)^3 dt$$
 (5)

b. Solve the following definite integral:

$$\int_{1}^{3} \frac{2q}{q^2 + 5} dq$$
(5)

c. Suppose you have observed that the rate at which production in a small stock enterprise changes with respect to improvement in carry capacity is given by:

$$\frac{dy}{dx} = 100\sqrt{x}$$

Where $\frac{dy}{dx}$ is the rate of change with dy being the change in output (i.e., number of animals) and dx being the change in carrying capacity. Furthermore, y and x represent (5) the number of animals and carrying capacity (i.e., number of small stock units (SSU) per hectare), respectively. Derive an equation that represents the output, y, as a function of carrying capacity, x, given initial conditions of 500 animals and carrying capacity of 3 SSU per hectare.

d. Consider an agribusiness that faces a budget constraint of \$108,000 and prices of labour
(*l*) and capital (*k*) of N\$4 and N\$3 per unit. Suppose the agribusiness's production function is represented by:

$$q(k,l) = k^{0.4} k^{0.5} \tag{10}$$

Find the units of l and k that maximises the agribusiness's output. Furthermore, compute and interpret the lambda (λ) value.

TOTAL MARKS

THE END

[25]

FORMULA

Basic Derivative Rules

Constant Rule. $\frac{d}{dx}(c) = 0$

Constant Multiple Rule: $\frac{d}{dx}[cf(x)] - cf'(x)$

Power Rule:
$$\frac{d}{dx}(x^n) - nx^{n-1}$$

Sum Rule:
$$\frac{d}{dx}[f(x)+g(x)] - f'(x) + g'(x)$$

Difference Rule: $\frac{d}{dx}[f(x) - g(x)] = f'(x) - g'(x)$

Product Rule: $\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) - g(x)f'(x)$

Quotient Rule
$$\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] - \frac{g(x)f'(x) - f(x)g'(x)}{\left[g(x)\right]^2}$$

Chain Rule: $\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$

1. $\int a \, dx = ax + C$

2.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \quad n \neq -1$$

3.
$$\int \frac{1}{x} dx = \ln |x| + C$$

$$4. \quad \int e^x \, dx = e^x + C$$

5.
$$\int a^x dx = \frac{a^x}{\ln a} + C$$

6.
$$\int \ln x \, dx = x \ln x - x + 0$$

Integration by Substitution

The following are the 5 steps for using the integration by substitution metthod:

- Step 1: Choose a new variable *u*
- Step 2: Determine the value *dx*
- Step 3: Make the substitution
- Step 4: Integrate resulting integral
- Step 5: Return to the initial variable *x*

Unconstrained optimization: Multivariate functions

The following are the steps for finding a solution to an unconstrained optimization problem:

f'(a) = 0 f'(a) = 0	f''(a) > 0 f''(a) < 0		inimum at $x = a$ aximum at $x = a$	
Condition		Minimum	Maximum	
FOCs or necessary conditions SOCs or sufficient conditions		$f_1 = f_2 = 0$ $f_{11} > 0, f_{22} > 0, \text{ and}$ $f_{11} f_{22} > (f_{12})^2$	$f_1 = f_2 = 0$ $f_{11} < 0, f_{22} < 0, \text{ and}$ $f_{11}.f_{22} > (f_{12})^2$	
		Inflection point		
		$f_{11} < 0, f_{22} < 0, \text{ and } f_{11}, f_{22} < (f_{12})^2 \text{ or}$ $f_{11} < 0, f_{22} < 0, \text{ and } f_{11}, f_{22} < (f_{12})^2$		
		Saddle point		
		$f_{11} > 0, f_{22} < 0, \text{ and } f_{11}, f_{22} < (f_{12})^2, \text{ or}$ $f_{11} < 0, f_{22} > 0, \text{ and } f_{11}, f_{22} < (f_{12})^2$		
		Inconclusive		
		$f_{11}f_{22} = (f_{12})^2$		

Derivative Rules for Exponential Functions

$$\frac{d}{dx}(e^{z}) = e^{z}$$

$$\frac{d}{dx}(a^{z}) = a^{x} \ln a$$

$$\frac{d}{dx}(e^{t(z)}) = e^{t(x)}g'(x)$$

$$\frac{d}{dx}(a^{t(x)}) = \ln(a)a^{t(z)}g'(x)$$

Derivative Rules for Logarithmic Functions

$$\frac{d}{dx}(\ln x) = \frac{1}{x}, x > 0$$

$$\frac{d}{dx}\ln(g(x)) = \frac{g'(x)}{g(x)}$$

$$\frac{d}{dx}(\log_a x) = \frac{1}{x\ln a}, x > 0$$

$$\frac{d}{dx}(\log_a g(x)) = \frac{g'(x)}{g(x)\ln a}$$

Integration by Parts The formula for the method of integration by parts is:

$$\int u dv = u \cdot v - \int v du$$

There are three steps how to use this formula:

- Step 1: identify **u** and **dv**
- Step 2: compute *u* and *du*
- Step 3: Use the integration by parts formula

Unconstrained optimization: Univariate functions The following are the steps for finding a solution to an unconstrained optimization problem:

• Step 1: Find the critical value(s), such that:

$$f'(a) = 0$$

• If
$$f''(a) > 0 \rightarrow \min$$

• If $f''(a) > 0 \rightarrow \max$ ima

Constrained Optimization

The following are the steps for finding a solution to a constrained optimization problem using the Langrage technique:

- Step 1: Set up the Langrage equation
- Step 2: Derive the First Order Equations
- Step 3: Solve the First Order Equations
- Step 4: Estimate the Langrage Multiplier