Faculty of Health, Natural Resources and Applied Sciences

School of Natural and Applied

Department of Biology, Chemistry and Physics

13 Jackson Kaujeua Street T: +264 61 207 2012 Private Bag 13388 F: +264 61 207 9012 Windhoek E: dbcp@nust.na NAMIBIA

QUALIFICATION: BACHELOR OF SCIENCE	
QUALIFICATION CODE: 08BOSC	LEVEL: 7
COURSE: QUANTUM PHYSICS	COURSE CODE: QPH702S
DATE: NOVEMBER 2024	SESSION: 1
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY: QUESTION PAPER

EXAMINER:

Professor Dipti Ranjan Sahu

MODERATOR:

Professor Vijaya S. Vallabhapurapu

INSTRUCTIONS:

- 1. Answer all questions on the separate answer sheet.
- 2. Please write neatly and legibly.
- 3. Do not use the left side margin of the exam paper. This must be allowed for the examiner.
- 4. No books, notes and other additional aids are allowed.
- 5. Mark all answers clearly with their respective question numbers.

PERMISSIBLE MATERIALS:

1. Non-Programmable Calculator

This question paper consists of 4 pages including this front page

- Consider a one-dimensional particle which is confined within the region $0 \le x \le a$ and whose wave function is $\psi(x, t) = \sin(\pi x/a) \exp(-i\omega t)$.
 - 1.1.1 Find the potential V(x) (5)
 - 1.1.2 Calculate the probability of finding the particle in the interval $a/4 \le x \le 3a/4$ (5)
- 1.2 List with reason, three properties of a valid wave of a bounded state. (3)
- 1.3 Explain briefly why photoelectric effect is a quantum phenomenon? (2)
- 1.4 Compare the energies and wavefunctions of 1-D infinite well and harmonic oscillator (3)
- 1.5 Why the de-Broglie wave associated with a moving car is not observable? (2)

QUESTION 2:

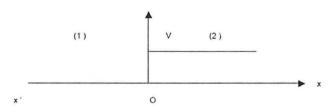
[20 MARKS]

2.1. The wave function of the particle is given by

$$\Psi (x) = \sqrt{\frac{2}{a}} \sin(\frac{n\pi}{a}x), x \in [0,a], n=1, 2, 3....$$

Find the average kinetic energy T (p) of the particle described by this wavefunction (5)

- 2.2 How to describe a system in quantum mechanics? (2)
- Write the quantum mechanical operators of the classical mechanical expressions
 K.E. = ½ mv² in three-dimensional space.
- 2.4 Consider a potential step of height V as shown in the figure. A particle of energy
 E > V propagates from -∞ to +∞



Given A_1 is the amplitude of the incident wave from wave vector K_1 and A_2 be the amplitude of the transmitted wave from wave vector K_2 . Find the relation between A_1 and A_2 .

QUESTION 3:

[20 MARKS]

- 3.1 By applying L² operator to the harmonic state $Y_2^0(\theta,\varphi)$, determine the eigenvalue of the state. (10)
- 3.2 Evaluate the radial eigenfunctions R₃₂ of the lithium atom

QUESTION 4:

[20 MARKS]

(10)

- 4.1 Evaluate the spin matrices Sz for a particle with spin s = $\frac{1}{2}$ (5)
- 4.2 Evaluate the commutation of L^2 and L_3 and state the consequence of your results. (5)
- 4.3. Evaluate the matrix of L_2 for I = 2. Why is the matrix not diagonal? (10)

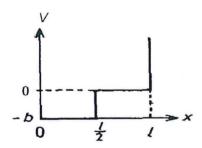
QUESTION 5:

[20 MARKS]

The perturbation $H'=bx^4$, where b is a constant, is added to the one dimensional harmonic oscillator potential $V(x) = \frac{1}{2} mw^2 x^2$. Determine the correction to the ground state energy to first order in b. The normalized ground state wave function of the one dimensional harmonic oscillator potential is (10)

$$\psi_0 = \left(\frac{m\omega}{\hbar\Pi}\right)^{1/4} e^{\frac{-m\omega x^2}{2\hbar}}$$

5.2 A particle moves in a one-dimensional box with a small potential dip (10)



V=
$$\infty$$
 for x< 0 and x>1,
V = -b for 0 < 2 < (1/2) ℓ ,
V = 0 for (1/2) ℓ < x < 1.

Treat the potential dip as a perturbation to a regular rigid box $(V = \infty \text{ for } x < 0 \text{ and } x > 1, V = 0 \text{ for } 0 < x < 1)$. Find the first order energy of the ground state. The ground state energy and wavefunction is given by

$$E^{(0)} = \frac{\pi^2 h^2}{2ml^2}, \quad \psi^{(0)}(x) = \sqrt{\frac{2}{l}} \sin \frac{\pi x}{l}$$

Useful Standard Integral

$$\int_{-\infty}^{\infty} e^{-y^2} dy = \sqrt{\pi}$$

$$\int_{-\infty}^{\infty} y^n e^{-y^2} dy = \frac{\sqrt{\pi}}{n}; \quad n \quad \text{even}$$

$$\int_{-\infty}^{\infty} e^{-\alpha y^2} e^{-\beta y} dy = \left(\frac{\pi}{\alpha}\right)^{\frac{1}{2}} e^{\frac{\beta^2}{4\alpha}}$$

$$0; \quad n \quad \text{odd}$$

$$\int_0^\infty x^n e^{-x} dx = n!$$

Spherical harmonics $Y_l^m(\theta, \varphi) = \left[\frac{(2l+1)}{4\pi} \frac{(l-m)!}{(l+m)!}\right]^{\frac{1}{2}} e^{im\varphi} P_l^m(x)$

Associated Legendre polynomials: $P_l^m(x) = (-1)^l \frac{(1-x^2)^{m/2}}{2^l l!} \left(\frac{d}{dx}\right)^{l+m} (1-x^2)^l$, where $x = \cos \theta$

Radial eigenfunctions of hydrogen-like atoms:

$$R_{nl}(r) = \left(\frac{2Z}{a_0 n}\right)^{\frac{3}{2}} \left[\frac{(n-l-1)!}{2n[(n+l)!]^3}\right]^{\frac{1}{2}} \left(\frac{2Z}{a_0 n}r\right)^l e^{-\frac{Zr}{a_0 n}} L_{n-l-1}^{2l+1}(\rho), \text{ where}$$

$$L_{n-l-1}^{2l+1}(\rho) = \sum_{k=0}^{n-l-1} (-1)^k \cdot \frac{\left[(n+l)!\right]^2 \rho^k}{(n-l-1-k)!(2l+1+k)!k!}, \quad \text{and} \quad \rho = \frac{2Z}{a_0 n} r$$

END OF QUESTION PAPER