Faculty of Health, Natural Resources and Applied Sciences

School of Natural and Applied Sciences

Department of Mathematics, Statistics and Actuarial Science 13 Jackson Kaujeua Street Private Bag 13388 Windhoek NAMIBIA

T: +264 61 207 2913 E: msas@nust.na W: www.nust.na

QUALIFICATION: BACHELOR of SCIENCE IN APPLIED MATHEMATICS AND STATISTICS and BACHELOR OF SCIENCE	
QUALIFICATION CODE: 07BSAM / 07BOSC	LEVEL: 6
COURSE: CALCULUS 2	COURSE CODE: CLS601S
DATE: NOVEMBER 2024	SESSION: 1
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY: EXAMINATION QUESTION PAPER

EXAMINER:

Mr Benson.E Obabueki

MODERATOR:

Dr. David liyambo

INSTRUCTIONS

- 1. Answer all questions on the separate answer sheet.
- 2. Please write neatly and legibly.
- 3. Do not use the left side margin of the exam paper. This must be allowed for the examiner.
- 4. No books, notes and other additional aids are allowed.
- 5. Mark all answers clearly with their respective question numbers.
- 6. All written work must be done in blue or black ink and sketches in pencil.
- 7. Show clearly all the steps used in the calculations.

PERMISSIBLE MATERIALS:

1. Non-Programmable Calculator without a cover.

ATTACHEMENTS

None

This paper consists of 2 pages excluding this front page

Question 1 (28 marks)

Determine the following indefinite integrals using only the indicated method for each:

1.1
$$\int (w+4)\sin(5w)dw$$
 using integration by parts. (6)

1.2
$$\int \frac{3x+7}{x^2-x-6} dx$$
 using integration by partial fractions. (8)

1.3
$$\int \frac{\sqrt{2}}{\sqrt{98-2x^2}} dx \text{ using trigonometric substitution.}$$
 (7)

1.4
$$\int \frac{4dx}{\sin^2 x}$$
 using the t-formula. (7)

Question 2 (19 marks)

2.1 Use the midpoint rule to estimate
$$\int_{0}^{1} (x^3 + x^2) dx$$
 with $n = 6$. (10)

2.2 What value of n will be required to estimate $\int_{0}^{1} (x^3 + x^2) dx$ correct to within 0.001 using the midpoint rule. (9)

Question 3 (20 marks)

3.1 Evaluate the improper integral
$$\int_{0}^{3} \frac{2}{\sqrt{3-x}} dx$$
 if it is convergent. (10)

3.2 Calculate the root mean square value of
$$f(x) = \frac{2}{x+3}$$
 for $0 \le x \le 2$. (10)

Question 4 (19 marks)

- 4.1 Determine the volume of the solid generated when a plane figure bounded by $y = 5\cos 2x$, the x-axis, and the ordinates x = 0 and $x = \frac{\pi}{4}$, rotates about the x-axis through a complete revolution. (7)
- 4.2 A curve is defined by the parametric equations $x = \theta \sin \theta$ and $y = 1 \cos \theta$. Determine the area of the surface generated by the curve between $\theta = 0$ and $\theta = 2\pi$, when rotated completely about the x-axis. (12)

Question 5 (14 marks)

- 5.1 Determine the Taylor's series for $f(x) = e^{-x}$ about x = 2 from the definition. That is, without assuming that $e^{\theta} = \sum_{n=0}^{\infty} \frac{\theta^n}{n!}$. (9)
- 5.2 Express (-4,3) in polar coordinate form. (5)

End of paper

Total marks 100%