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Problem 1 [25 Marks] 

1 1 E bl' h h p d, . . x R ( ) 120 + 60x + 12x2 + x
3 

- . sta 1s t e a e approxnnat10n e :::::; 3,3 x = 120 _ 
60

x + 12x2 _ x 3 

1-2-1. Find the Fourier sine series for the 27T-periodic function f(x) = x(7T - x) on (0, 7r). 

1-2-2. Use its Fourier representation to find the value of the infinite series. 

1 1 1 1 
1--+---+-+· .. 33 53 73 93 

Problem 2 [20 Marks] 

For any non negative interger n the Chebyshev polynomial of the first kind of degree n is defined as 

Tn(x) = cos [ncos- 1(x)], for x E [-1, l]. 

2-1. Show the following property 

{ 

0, 

T T _ f 1 Tm(x)Tn(x) d _ 7T, < m, n>- ---- X-
-1 Jl - x2 7T 

2' 

m=/n, 
m = n = 0, 

m = n # 0. 

2-2. The property in 2-1. allows us to define the Chebyshev series of f(x) as follows 

00 1 
f (x) ~ L 'ckTk(x) = 2caTo(x) + c1T1 (x) + c2T2(x) + · · · 

k=O 

where ck =< f, Tk > / < Tk, Tk > for k 1 and co/2 =< f, To > /7T 

2-2-1. Determine the Chebyshev series expansion of f(x) = Jl - x2. 

Problem 3 [19 Marks] 

3-1. Given the integral 

[1 ~dx = 1.6 
10.04 V X 

3-1-1. Compute T(J) = R(J, 0) for J = 0, 1, 2, 3, 4 using the recursive Trapezoidal rule. 
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3-1-2. State the two-point and the three-point Gaussian quadrature rules respectively for a continuous 
function f over the interval [-1, 1]. [4] 

Problem 4 [26 Marks] 

4-1. Assume a 3 x 3 matrix A is known to have three different real eigenvalues -\1, -\2 and -\3. Assume we 
know that -\1 is near -2, -\2 is near -5 and -\3 is near -1. 

4-1-1. Explain how the power method can be used to find the values of -\1, /\2 and -\3 respectively. [2x3=6] 

4-1-2. Discuss how shifting can be used in 4-1-1. to accelerate the convergence of the power method. [2] 

1 



4-2. Use Jacobi's method to find the eigenpairs of the matrix 

[l J2 2] 
A= J2 3 J2 

2 J2 1 

[18] 

God bless you ! ! ! 
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