

Faculty of Health, Natural Resources and Applied Sciences

School of Natural and Applied Sciences

Department of Mathematics, Statistics and Actuarial Science 13 Jackson Kaujeua Street T: +264 61 207 2913 Private Bag 13388 E: msas@nust.na Windhoek NAMIBIA

W: www.nust.na

QUALIFICATION: BACHELOR of SCIENCE IN APPLIED MATHEMATICS AND STATISTICS	
QUALIFICATION CODE: 07BSAM	LEVEL: 6
COURSE: STATISTICAL INFERENCE 2	COURSE CODE: SIN601S
DATE: NOVEMBER 2024	SESSION: 1
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EAMINATION QUESTION PAPER

EXAMINER:

Dr J MWANYEKANGE

MODERATOR:

Dr D. B. GEMECHU

INSTRUCTIONS:

- 1. Answer all questions on the separate answer sheet.
- 2. Write your answers neatly and legibly.
- 3. Do not use the left side margin of the exam paper. This must be allowed for the examiner.
- 4. No books, notes and other additional aids are allowed.
- 5. Mark all answers clearly with their respective question numbers.

PERMISSIBLE MATERIALS:

1. Non-Programmable Calculator without cover

This paper consists of 4 pages including this front page

Question 1 [15 Marks]

1.1. Let $Y_1 < Y_2 < \dots < Y_5$ be the ordered statistics of 5 independently and identically distributed continuous random variables X_1, X_2, \dots, X_5 with pdf f given by

$$f_X(x) = \begin{cases} 6x^2, & for \ 0 < x < 1 \\ 0, & Otherwise \end{cases}$$

Then,

1.1.1. Show that the cumulative density function of X is
$$F_X(x) = 2x^3$$
 [3]

$$Hint: f_{Y_i,Y_j}(y_i, y_j) = \frac{n!}{(i-1)!(j-i-1)!(n-j)!} [F_X(y_i)]^{i-1} [F_X(y_j) - F_X(y_i)]^{j-i-1} [1 - F_X(y_j)]^{n-j} f_X(y_i) f_X(y_j)$$

Question 2 [13 marks]

2.1 Let $X_1, X_2, ..., X_n$ be independently and identically distributed random variable with normal distribution having $E(X_i) = \mu$ and $Var(X_i) = \sigma^2$.

Show, using the moment generating function, that $Y = \sum_{i=1}^{n} X_i$ has a normal distribution with $\mu_Y = n\mu$ and $\sigma_Y^2 = n\sigma^2$. [8]

(Hint: If
$$X \sim N(\mu, \sigma^2)$$
, then $M_{X_i}(t) = e^{\mu t + \frac{\sigma^2 t^2}{2}}$)

2.2 If $X \sim \chi_m^2$ and $Y \sim \chi_n^2$ such that X and Y are independent, what is the distribution of X + Y? [5]

Question 3 [8 marks]

3. Let X_1, X_2, \dots, X_n be a random sample of observations from a Bernoulli distribution

Show that
$$T = \frac{y(y-1)}{n(n-1)}$$
 is an unbiased estimator of θ^2 where $y = \sum_{i=1}^n x_i$. (Hint: $E(y) = n\theta$ and $Var(y) = n\theta(1-\theta)$

Question 4 [44 marks]

4.1 If $X \sim \Gamma(\alpha, \theta)$ a random sample of n observations $X_1, X_2, ..., X_n$ is selected from a population X_i for i = 1, 2, ..., n posses a gamma probability density function with parameters α and θ . Use the method of moment to estimate α and θ . Hint: $E(X) = \alpha \theta$, $Var(X) = \alpha \theta^2$ and

$$M_{x}(t) = \left(\frac{1}{1 - \theta t}\right)^{\alpha}$$
 [8]

4.2 Let $X_1, X_2, ..., X_n$ be a random variable from a Bernoulli distribution with pdf:

$$f(X; p) = p^{X}(1-p)^{1-X}, X = 0,1.$$

- **4.2.1** Using the m.g.f of X, show that the mean and variance of X_i are p and p(1-p), respectively (Hint: $M_{X_i}(t) = pe^t + q$) [6]
- **4.2.2** Find the maximum likelihood estimate of p. [6]
- **4.2.3** Let $T_n = \sum_{i=1}^n X_i$, show that T_n is sufficient for p.

$$\left(\mathbf{Hint}: f(T_n) = \binom{n}{T_n} p^{T_n} (1-p)^{n-T_n}\right)$$
 [8]

4.2.4 Show that the $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is a minimum variance unbiased estimator (MVUE)

of
$$p.\left(Hint: CRB = \frac{1}{nE\left(\frac{\partial}{\partial \rho}\log f(x;\rho)\right)^2}\right)$$
 [16]

Question 5 [20 marks]

5.1 Suppose that the prior distribution of θ follow a Gamma distribution with shape $\alpha = 2$ and rate β ,

$$h(\theta) = \beta^2 \theta e^{-\beta \theta}$$
 for $\theta > 0$

Given θ , X is uniform over the interval $(0, \theta)$ with pdf given by

$$f(x|\theta) = \begin{cases} \frac{1}{\theta}, & 0 < x < \theta \\ 0, & Otherwise \end{cases}$$

What is the posterior distribution of θ . $\left(Hint: \phi(\theta|x) = \frac{f(x|\theta)h(\theta)}{\int_x^{\infty} f(x|\theta)h(\theta)d\theta} \right)$ [8]

5.2 Let $X_1, ..., X_n$ be random samples from the binomial distribution:

$$f(x|\theta) = \binom{n}{x} \theta^x (1-\theta)^{n-x}, \quad \text{for } x = 1, 2, \dots, n$$

The prior distribution of θ is a beta distribution with the parameters α and β ,

$$h(\theta) = \begin{cases} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \cdot \Gamma(\beta)} \; \theta^{\alpha-1} \, (1-\theta)^{\beta-1}, & for \; 0 < \theta < 1 \\ 0, & Otherwise \end{cases}$$

Show that posterior distribution of θ given X = x is a beta distribution with parameter $x + \alpha$

and
$$n - x + \beta$$
. $\left(Hint: \int_0^1 \theta^{x+\alpha-1} (1-\theta)^{n+\beta-1} d\theta = \frac{\Gamma(x+\alpha)\Gamma(n-x+\beta)}{\Gamma(n+\alpha+\beta)} \right)$ [12]

=======TOTAL MARKS 100=============