

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY FACULTY OF COMPUTING AND INFORMATICS

DEPARTMENT OF CYBER SECURITY

QUALIFICATION: BACHELOR OF COMPUTER SCIE	NCE (HONS INFORMATION SECURITY)
QUALIFICATION CODE: 08 BHIF	LEVEL: 8
COURSE: APPLIED CRYPTOGRAPHY	COURSE CODE: APC811S
DATE: JULY 2024	SESSION: THEORY
DURATION: 2 HOURS 30 MINUTES	MARKS: 80

SECOND OPPORTU	JNITY/ SUPPLEMENTARY EXAMINATION QUESTION PAPER
EXAMINER(S)	PROF ATTLEE M. GAMUNDANI
MODERATOR:	MR STANFORD MUSARURWA

THIS QUESTION PAPER CONSISTS OF 2 PAGES

(Excluding this front page)

INSTRUCTIONS

- 1. Answer ALL the questions.
- 2. Write clearly and neatly.
- 3. In answering questions, be guided by the allocated marks.
- 4. Number your answers following the numbering used in this question paper.

PERMISSIBLE MATERIALS

1. None

Question 1: Overview of Cryptography

- (a) Discuss the role of cryptography in enforcing data protection laws such as the General Data Protection Regulation (GDPR) or the Data Protection Bill in Namibia.

 [2 marks]
- (b) How does cryptography aid in compliance with these regulations, and what are the potential challenges or limitations? [8 marks]

Question 2: Mathematical Foundations of Cryptography

- (a) Describe the role of elliptic curve cryptography (ECC) in securing mobile devices. [2 marks]
- (b) Compare its efficiency and security level to RSA's in this specific application.

[8 marks]

Question 3: Symmetric Key Cryptography

Evaluate the security and performance implications of using block cipher modes of operation, such as CBC and GCM, in network security protocols. [10 marks]

Question 4: Asymmetric Key Cryptography

Explain the concept of public key infrastructure (PKI) and how it supports digital signatures and certificates in e-commerce transactions. [10 marks]

Question 5: Hash Functions and Digital Signatures

- (a) Explain the process of generating and verifying a digital signature using the ECDSA algorithm. [7 marks]
- (b) Discuss its application in cryptocurrency transactions. [3 marks]

Question 6: Cryptographic Protocols

Describe the SSL/TLS handshake process and how it ensures secure web browsing. Include in your discussion the roles of asymmetric and symmetric encryption in this [10 marks] process.

Question 7: Advanced Topics

(a) Explain the threat of quantum computers to current cryptographic algorithms.

[3 marks]

(b) Discuss post-quantum cryptography and its importance in future-proofing [7 marks] cryptographic practices.

Question 8: Applications of Cryptography

(a) Evaluate the role of cryptography in IoT devices.

[1 mark]

(b) Discuss the challenges and propose solutions for implementing cryptographic security in resource-constrained environments. [9 marks]

*****END OF EXAMINATION PAPER****