

DAMIBIA UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OFCOMMERCE, HUMAN SCIENCE AND EDUCATION

DEPARTMENT OF ECONOMICS, ACCOUNTING AND FINANCE

QUALIFICATION: BACHELOR OF ECONOMICS				
QUALIFICATION CODE: 07BECO		LEVEL: 7		
COURSE CODE: ECM712s		COURSE NAME: ECONOMETRICS		
SESSION: JULY 2024		PAPER: THEORY		
DURATION: 3 HOURS		MARKS: 100		
SECOND OPPORTUNITY EXAMINATION QUESTION PAPER				
EXAMINER(S)	MR. PINEHAS NANGUL	A		
MODERATOR:	Dr R. KAMATI			
INSTRUCTIONS				
1. Answer ALL the questions in section A and B				
2. Write clearly and neatly.				
	3. Number the a	nswers clearly.		

PERMISSIBLE MATERIALS

- 1. Scientific calculator
- 2. Pen and Pencil
- 3. Ruler

THIS QUESTION PAPER CONSISTS OF _5_ PAGES (Including this front page)

[20 MARKS]

SECTION A

MULTIPLE CHOICE QUESTIONS

- 1. Data collected at a point in time is called
 - a) Cross-sectional data
 - b) Time series data
 - c) Pooled data
 - d) Panel data
- 2. OLS stands for what in Econometrics?
 - a) Optimally Linearized Solution
 - b) There is no such thing in Econometrics
 - c) The only rock band that Econometricians are crazy about
 - d) Ordinary Least Squares
- 3. In the estimated model $\hat{logQ_i} = 2.25 0.7 logP_i + 0.02Y_i$, where p is the price and q is the quantity demanded of a certain good and Y is disposable income, what is the meaning of the coefficient on logP?
 - a) If the price increases by 1%, the demanded quantity will be 0.007% lower on average, ceteris paribus
 - b) If the price increases by 1%, the demanded quantity will be 70% lower on average, ceteris paribus
 - c) If the price increases by 1%, the demanded quantity will be 0.7% lower on average, ceteris paribus
 - d) None of the answers above is correct
- 4. In the estimated model $\widehat{logQ_i} = 2.25 0.7 logP_i + 0.02Y_i$, where p is the price and q is the quantity demanded of a certain good and Y is disposable income, what is the meaning of the coefficient on logY?
 - a) If disposable income increases by a thousand dollars, the demanded quantity will be 0.02% higher on average, ceteris paribus
 - b) If disposable income increases by a thousand dollars, the demanded quantity will be 0.0002% higher on average, ceteris paribus
 - c) If disposable income increases by a thousand dollars, the demanded quantity will be
 2% higher on average, ceteris paribus
 - d) None of the answers above is correct
- 5. Data collected for a variable over a period of time is called

- a) Cross-sectional data
- b) Time series data
- c) Pooled data
- d) Panel data
- 6. . Which of the following statements is TRUE concerning OLS estimation?
 - a) OLS minimises the sum of the vertical distances from the points to the line
 - b) OLS minimises the sum of the squares of the vertical distances from the points to the line
 - c) OLS minimises the sum of the horizontal distances from the points to the line
 - d) OLS minimises the sum of the squares of the horizontal distances from the points to the line.
- 7. Which of the following are alternative names for the dependent variable (usually denoted by y) in linear regression analysis?
 - a) The regressand
 - b) The regressor
 - c) The explanatory variable
 - d) None of the above
- 8. Which one of the following statements best describes the algebraic representation of the fitted regression line?
 - a) $\hat{y}_t = \hat{\alpha} + \hat{\beta} x_t + \hat{u}_t$

 - b) $\hat{y}_t = \hat{\alpha} + \hat{\beta} x_t$ c) $\hat{y}_t = \hat{\alpha} + \hat{\beta} x_t + u_t$
 - d) $y_t = \hat{\alpha} + \hat{\beta} x_t + \hat{u}$.
- 9. The residual from a standard regression model is defined as
 - a) The difference between the actual value, y, and the mean, y-bar
 - b) The difference between the fitted value, y-hat, and the mean, y-bar
 - c) The difference between the actual value, y, and the fitted value, y-hat
 - d) The square of the difference between the fitted value, y-hat, and the mean, y-bar
- 10. Which one of the following statements best describes a Type II error?
 - a. It is the probability of incorrectly rejecting the null hypothesis
 - b. It is equivalent to the power of the test
 - c. It is equivalent to the size of the test

d. It is the probability of failing to reject a null hypothesis that was wrong

SECTION B

QUESTION ONE

All questions pertain to the simple (two-variable) linear regression model for which the population regression equation can be written in conventional notation as:

 $Y_i = \beta_1 + \beta_2 X_i + u_1 \text{ equation } 1$

where Y_i and X_i are observable variables, β_1 and β_2 are unknown (constant) regression coefficients, and u_i is an unobservable random error term. The Ordinary Least Squares (OLS) sample regression equation corresponding to regression equation (1) is

 $Y_i = \hat{\beta}_1 + \hat{\beta}_2 X_i + \hat{u}_i$ equation 2

where $\hat{\beta}_1$ is the OLS estimator of the intercept coefficient β_1 , $\hat{\beta}_2$ is the OLS estimator of the slope coefficient β_2 , u_i is the OLS residual for the i-th sample observation, and N is sample size (the number of observations in the sample).

- a) State the Ordinary Least Squares (OLS) estimation criterion. State the OLS normal equations. [5 marks]
- b) Derive the OLS normal equations from the OLS estimation criterion. [5 marks]
- c) Show that the OLS slope coefficient estimator $\hat{\beta}_1$, is a linear function of the Y_i , sample values. [10 marks]
- d) Stating explicitly all required assumptions, prove that the OLS slope coefficient estimator $\hat{\beta}_2$ is an unbiased estimator of the slope coefficient β_2 . [10 marks]

QUESTION TWO

[20 MARKS]

The following is the econometric model which is presented in four different forms. You are require to interpret each of them.

a)	\hat{C} = - 8.078 +0.70641lncome	[5 marks]
b)	\hat{C} = - 18.072+22.73841LogIncome	[5 marks]
c)	<i>LogC</i> = 7.203+0.000218Income	[5 marks]
d)	<i>LogC</i> = - 0.2957+1.0464Logincome	[5 marks]

QUESTION THREE

[30 MARKS]

The MacKinnon-White-Davidson (MWD) Test is used to choose between a linear model and log-linear model .

Income, l _i	Consumption, C _i	
462003	308105	
480307	324006	
514001	340706	
532305	356605	
548707	370807	
564905	382203	

a) the null and alternative hypothesis associated with MWD test [1 mark]

b) If the estimated linear regression model is $\hat{C}_i = -14989.7 + 0.7I_i$, calculate the value of \hat{C}_i associated with each level of income. [6 marks]

c) If the estimated log-linear model is $\widehat{logC_i} = 5.11 + 0.00000824I_i$, calculate the value of $\widehat{logC_i}$ associated with each level of income. [6 marks]

d) Obtain the values of Z_{1i}

[12 marks]

e) The linear regression model which came from regressing consumption on income and Z1i is $\hat{C}_i = -15023.5 + 0.700064I_i - 125428Z_{1i}$, standard error for Z_{1i} is 317372.1. Use t – statistic and t – critical to evaluate the significance Z_{1i} in the estimated equation. [5 marks]

All the best