

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF COMPUTING AND INFORMATICS

DEPARTMENT OF COMPUTER SCIENCE

QUALIFICATION: BACHELOR OF COMPUTER SCIENCE, BACHELOR OF COMPUTER IN CYBER		
SECURITY & BACHELOR OF INFORMATICS		
QUALIFICATION CODE: 07BACS, 07BCCS &	LEVEL: 5	
07BAIF		
COURSE: COMPUTER ORGANISATION	COURSE CODE: COA511S	
AND ARCHITECTURE		
DATE: JANUARY 2025	PAPER: THEORY	
DURATION: 2 HOURS	MARKS: 100	

SECOND OPPORTUNITY/SUPPLEMENTARY EXAMINATION QUESTION PAPER			
EXAMINER(S)	MR. JULIUS SILAA		
	MR. PHIUS SHAMBABI		
6	MR. ERICKY IIPUMBU		
	MR. ANDREAS AMUKWA		
	MS. JENNYPHAR KAVIKAIRUA		
	MS. HILLARY KWALA		
	MR. ADRIAAN GOBLER		
MODERATOR:	MR. SEBASTIAN MUKUMBIRA		

THIS QUESTION PAPER CONSISTS OF 5 PAGES

(Excluding this front page)

INSTRUCTIONS

- 1. Answer ALL the questions on the answer scripts.
- 2. Write clearly and neatly.
- 3. Number the answers clearly.

PERMISSIBLE MATERIALS

1. Calculator.

SECTION A [15 MARKS]: Each Question Weighs 1 Mark.

Indicate whether each of the following statements is True or False.

- A microprocessor's speed is maximized when it receives a continuous stream of instructions without any interruptions. [True/False]
- In a pipelined processor, multiple instructions can be executed at the same time, each in different stages of completion. [True/False]
- The simplified instruction set of RISC processors allows for faster interrupt handling compared to CISC processors. [True/False]
- 4. Machine parallelism refers to the simultaneous execution of independent instructions, which can enhance overall performance. [True/False]
- Organizational attributes, such as the hardware design of a computer, are typically hidden from the programmer and do not affect how the programmer writes code. [True/False]
- 6. The Instruction Set Architecture (ISA) defines the set of instructions a processor can execute and determines how software interacts with hardware. [True/False]
- 7. Cache memory is generally faster than the register file because it is closer to the processor core. [True/False]
- 8. Overflow in arithmetic operations can occur without a carry, depending on the type of operation and how data is represented. [True/False]
- 9. The typical states of a process include: new, ready, running, waiting, and terminated, while interrupt handling is a separate mechanism. [True/False]
- 10. Memory swapping occurs when a process is moved to secondary storage to free up main memory for other processes. [True/False]
- 11. A hexadecimal digit represents 4 bits, and sequences of hexadecimal digits are often used to represent binary numbers in a more compact form. [True/False]
- 12. The instruction set of a processor allows the programmer to directly control the operations the processor performs. [True/False]
- 13. Memory references are typically faster than register references because memory can store more data than registers. [True/False]
- 14. The kernel is the core of the operating system, and it is typically written in low-level programming languages like C or assembly. [True/False]

15. A processor's clock frequency, measured in Hertz (Hz), directly affects how many instructions it can execute per second, influencing its performance. [True/False]

SECTION B [15 MARKS]: Each Question Weighs 1 Mark.

Choose the correct answer for each of the following:

1.	Binary 11001010 is hexadecimal		
	A. C A	B. 9 A	
	C. D 2	D. 6 A	
2.	can store data indefinitely until an input changes its state.		
	A. flip-flop	B. decoder	
	C. multiplexer	D. latch	
3.	The operand yields to	rue only if both of its operands are true.	
	A. NOT	B. AND	
	C. XOR	D. OR	
4.	A is a part of a proces	ss that can execute independently and can have its own	
	execution context.		
	A. process	B. thread	
	C. task	D. process manager	
5.	5. In modern ARM architecture, the standard instruction size is bits lo		
	A. 8	B. 16	
	C. 32	D. 64	
6.	i. The is responsible for fetching instructions and decoding them in the C		
	A. registers	B. control unit	
	C. ALU	D. system bus	
7.	In digital circuits, are	used to select one out of multiple inputs based on a	
	selection signal.		
	A. multiplexers	B. counters	
	C. flip-flops	D. encoders	
8.	The identifies the loc	ation of the operand.	
	A. opcode	B. address register	
	C. source operand	D. data register	

9.	The operand can yield	d true if at least one of its operands is tr	ue.
	A. AND	B. OR	
	C. XOR	D. NOT	
10.	A architecture is desi	gned to use multiple instruction pipeline	es for parallel
	processing of instructions.		
	A. superscalar	B. scalar	
	C. hybrid	D. super-pipelined	
11	. The holds the next in	struction to be executed in a sequence.	
		B. memory address register	
	C. memory buffer register	D. program counter	
12		en the exponent falls below the minimur	n possible
	exponent, it is called		
	A. significand underflow	B. exponent underflow	
	C. significand overflow	D. exponent overflow	
13 registers are specialized for holding addresses used in memory operations.			
	A. general purpose	B. address	
	C. status	D. Control	
14	. In an optical CD, the areas that s	store data in the form of pits are called _	·
	A. lands	B. zones	
	C. sectors	D. tracks	
15	. The manages the exc	ecution of instructions by directing data	and control
	signals throughout the system.		
	A. control unit	B. CPU interconnect	
	C. ALU	D. data path	
SE	CTION C [70 MARKS]: Comprehe	nsion questions.	
Q	uestion 1		[15 Marks]
A new model of Raspberry Pi Phone has 32GB of RAM. The memory in this device is divided			device is divided
into several words, each consisting of 2048 bytes.			
a) How many bits are needed to address any single word in this memory?			
	Show your work sten by sten		(9 marks)

b) CPU is a vital computer resource and any good computing system should be design in such way to utilise CPU efficiently. Contrast programmed I/O from I/O channel.
 Why the CPU usage by I/O channel CPU is more efficient than Programmed I/O?
 (6 marks)

Question 2

[08 Marks]

a) Explain your understanding of the following virtual memory concepts

(4 marks)

- i) swapping
- ii) demand paging
- b) What is the ultimate importance of virtual memory management scheme? (4 marks)

Question 3

[14 Marks]

The following diagram represents a logical circuit. Please provide answers to the accompanying questions based on your understanding of circuit analysis

a) Provide the name of this circuit

(2 marks)

- b) Within the architecture of a CPU, where exactly would you find this circuit? (2 marks)
- c) Citing its components A, B, S and C, describe how this circuit work

(4 marks)

d) Let's say you want to design a circuit that turns on a light (output F) when the two switch inputs A and B are applied.

Truth Table

A	В	F
0	0	1
0	1	0
1	0	0
1	1	1

- i. Provide a canonical Boolean function (F) for the circuit above (2 marks)
- ii. Suppose this Function does not require any further minimization. Create a visual representation(circuit) of this Boolean function using logic gates (4 marks)

Question 4 [10 Marks]

- a) Instructions need specific information to execute. Identify four places within a computer where the data used by an instruction (operands) can be located (4 marks)
- b) Provide an example of a low-level computer instruction and briefly describe what this instruction must specify. (6 marks)

Question 5 [12 Marks]

Addressing modes specify how an instruction finds its operand. Explain this with examples of:

a) Implicit addressing mode (3 marks)

b) Register Indirect addressing mode (3 marks)

c) Relative addressing mode (6 marks)

Question 6 [11 Marks]

- a) Imagine opening Facebook on your phone. Behind the scenes, your phone's CPU follows
 a series of steps to make this happen. Explain the six stages the CPU goes through to
 process the instructions that allow you to use the app. (6 marks)
- b) The Program Status Word (PSW) holds key information about a program's current state.

 Name and briefly explain five common status flags found within a PSW. (5 marks)

*****END OF PAPER****