

Faculty of Health, Natural Resources and Applied Sciences

School of Natural and Applied Sciences

Department of Biology, Chemistry and Physics

13 Jackson Kaujeua Street T: +264 61 207 2012
Private Bag 13388 F: +264 61 207 9012
Windhoek E: dbcp@nust.na
NAMIBIA W: www.nust.na

QUALIFICATION: BACHELOR OF SCIENCE	
QUALIFICATION CODE: 07BOSC	LEVEL: 6
COURSE: MODERN PHYSICS	COURSE CODE: MPH602S
DATE: JANUARY 2025	SESSION: 1
DURATION: 3 HOURS	MARKS: 100

SECOND OPPORTUNITY / SUPPLEMENTARY: EXAMINATION QUESTION PAPER

EXAMINER:

PROF SYLVANUS ONJEFU

MODERATOR:

PROF DIPTI SAHU

INSTRUCTIONS:

- 1. Answer all questions on the separate answer sheet.
- 2. Please write neatly and legibly.
- 3. Do not use the left-side margin of the exam paper. This must be allowed for the examiner.
- 4. No books, notes and other additional aids are allowed.
- 5. Mark all answers clearly with their respective question numbers.

PERMISSIBLE MATERIALS

1. Non-Programmable Calculator

ATTACHMENTS

1. None

This paper consists of pages including the front page

Physical Constant

$$\begin{array}{ll} \text{Electron mass} & m_{e} = 9.11 \text{ x } 10^{-31} \text{ kg} \\ \text{Proton mass} & m_{p} = 1.6736 \text{ x } 10^{-27} \text{ kg} \\ \text{Planck constant} & h = 6.625 \text{ x } 10^{-34} \text{J} \\ \text{Speed of light} & c = 3 \text{ x} 10^{-8} \text{ m/s} \\ 1 \text{ eV} & 1.6 \text{ x } 10^{-19} \end{array}$$

QUESTION 1 [20 MARKS]

1.1 Calculate the values of a and b from the equation below

$$^{23}_{11} \text{Na} + ^{1}_{1} \text{H} \rightarrow ^{a}_{b} \text{Z} + ^{4}_{2} \text{He}$$
 (5)

- 1.2 Determine the de Broglie wavelength of electrons with a velocity of $1.0 \times 10^3 \text{ m/s}$. (6)
- 1.3 Electrons are moving with a velocity of 4.0 x 10 6 m/s.
- 1.3.1 What is the de Broglie wavelength of the electrons? (5)
- 1.3.2 If these electrons had started from rest, through what potential difference would they have had to be accelerated to attain the velocity? (4)

QUESTION 2 [26 MARKS]

- 2.1 Explain the ground state of an atom. (3)
- 2.2 Calculate the energy of the ground state and 1st excited state of the hydrogen atom. (4)
- 2.3 Calculate the frequency and wavelength of the photon emitted when an electron makes a quantum jump from the n = 3 state to the ground state of the hydrogen atom. [Take $h = 6.6 \times 10^{-34}$ Js; $c = 3.00 \times 10^{-8}$]. (9)
- 2.4 Determine the wavelength of an electron in meters that has been accelerated through a potential difference of 100 V. (6)
- 2.5 Calculate the de Broglie wavelength of a 0.20 kg ball moving with a speed of 15 m/s.

(4)

QUESTION 3	[20 MARKS]
3.1 Explain the Heisenberg uncertainty principle.	(3)
3.2 A electron moves in a straight line with a constant speed $v = 1.10 \times 10^6$ m which has been measured to a precision of 0.10%. What is the maximum precision with which its position could be simultaneously measured?	n/s
[Take $\hbar = 1.06 \times 10^{-34}$].	(10)
3.3 A radioactive material has a half-life of 10 hours. What fraction of the original radioactive nuclei will remain after 30 hours?	ginal (7)
QUESTION 4	[21 MARKS]
4.1 Using Pauli Exclusion Principle, explain and show why sodium (Z = 11) is next univalent atom after lithium.	s the (10)
4.2 Using Balmer series determine the wavelength of light emitted when a hydrom makes a transition from the n= 6 to the n= 2 energy level according to Bohr model. [Take Rydberg constant, R= 1.0974 X 10 ⁷ m ⁻¹].	_
4.3 Explain Zeeman Effect and state what does the effect confirms.	(5)
QUESTION 5	[13 MARKS]
5.1 Show the expression of a wave function of a particle in a state of definite e	energy. (4)
5.2 Showed that the ratio of the number of atoms disintegrating per unit time t the number of atoms in the source at that time is equal to a decay constant Also show that $N = N_0 e^{-\lambda t}$ where all symbols have their usual meaning	t λ.