

NAMIBIA UNIVERSITY OF SCIENCE AND TECHNOLOGY

Faculty of Health, Natural **Resources and Applied** Sciences

School of Natural and Applied Sciences

Department of Mathematics, Statistics and Actuarial Science 13 Jackson Kaujeua Street T: +264 61 207 2913 Private Bag 13388 E: msas@nust.na Windhoek W: www.nust.na NAMIBIA

QUALIFICATION : BACHELOR OF AGRICULTURAL MANAGEMENT							
QUALIFICATION CODE: 07BAGR	LEVEL: 5						
COURSE: AGRICULTURAL STATISTICS	COURSE CODE: AGS520S						
DATE: JANUARY 2024	SESSION: 1						
DURATION: 3 HOURS	MARKS: 100						

SECOND OPPORTUNITY / SUPPLEMENTARY: EXAMINATION QUESTION PAPER

EXAMINER:	Mr. Jonas Amunyela

MODERATOR: Mr. Andrew Roux

INSTRUCTIONS:

- 1. Answer all questions on the separate answer sheet.
- 2. Please write neatly and legibly.
- 3. Do not use the left side margin of the exam paper. This must be allowed for the examiner.
- 4. No books, notes and other additional aids are allowed.
- 5. Mark all answers clearly with their respective question numbers.

PERMISSIBLE MATERIALS:

1. Non-Programmable Calculator

ATTACHEMENTS

- 1. Z Table
- 2. T-distribution table
- 3. Chi-square table
- 4. Formula sheet

This paper consists of 8 pages including this front page

SECTION A

QUESTION 1 [24 marks]

Write down the letter corresponding to your choice next to the question number.

- Variability is a common characteristic in Biology. A characteristic that varies from observation to observation in the same group is called. [2]
 - A. mean
 - B. median
 - C. Random variable
 - D. variance
- 1.2 The branch of statistics devoted to the summarization and description of data is called: [2]
 - A. Descriptive statistics
 - B. Inferential statistics
 - C. Population statistics
 - D. Sample statistics
- 1.3 ______consist of methods for drawing and measuring the reliability of conclusions about population based on information obtained from a sample of the population. [2]
 - A. Probability statistics
 - B. Descriptive statistics
 - C. Inferential statistics
 - D. Sample statistics

Agricultural Statistics (AGS520S)

1.4		can be broadly defined as a systematic enquiry into a subject to)
	dis	cover new facts	[2]
	A.	Statistics	
	в.	Research	
	C.	Probability distribution	
	D.	Statistical tables	
1.5	Qu	antitative variables can be classified as:	[2]
	A.	Discrete or continuous	
	в.	Nominal or interval	
	C.	Normal distribution or nominal	
	D.	Ordinal or ratio	
1.6	The	e following are all examples of qualitative data except:	[2]
	A.	Soil type	
	в.	Type of season	
	C.	Age in years of ten employees	
	D.	Crop variety	
17	\\/h	ich of the following is a property of the median?	[2]
2.17	Δ	Can be distorted by outliers	[2]
	R.	Cannot be affected by outliers	
	с.	third quartile	
	D.	There may be several medians in the same data set	

Agricultural Statistics (AGS520S) 2nd Opportunity- January 2024

1.8 The following are all examples of ordinal scales of measurement except: [2] Α. Organizational structure Β. Position in the work environment C. Rank in police force D. PH scales 1.9 The narrower the confidence interval, [2] A. the more precise it is B. the less precise it is C. the easier computations D. the larger the population. 1.10 A random sample of eight observations from a population containing 58 elements was taken, and the following values were obtained. The sample mean is: [2] 12, 16, 19, 21, 24, 25, 17, 32 A. 19.25 B. 3.77 C. 8 D. 20.75 1.11 Researchers draw sample because of all the following reasons except [2] Reduce cost Α. Β. Can be done in a shorter time frame C. Sampling is interesting D. Reduction of biases

Agricultural Statistics (AGS520S)

1.12 If

 H_0 : There is no association between variables and H_1 : There is an association between variables , the decision rule for this hypothesis testing is: [2]

- A. reject H_0 if $\chi^2_{stat} \ge \chi^2_{crit}$
- B. reject H_0 if $\chi^2_{stat} \leq \chi^2_{crit}$
- C. reject H_0 if $\chi^2_{crit} \ge \chi^2_{stat}$
- D. reject H_0 if $\chi^2_{crit} = \chi^2_{stat}$

SECTION B (Clearly show all your work)

QUESTION 2 (41 marks)

2.1 The following relates to the weights of 36 female students in a state university. The data were recorded to the nearest pound.

138	146	168	146	161	164	158	126	173
150	140	138	142	135	132	147	176	147
144	136	163	135	150	125	148	120	153
149	152	154	140	145	157	144	165	135

- 2.1.1 Using classes 120 to less than 130, 130 to less than 140, and 140 to less than 150..., construct a frequency distribution table for the data. [7]
- 2.2 Yogurt is one of the best sources of calcium, providing up to 34% of the DV in one cup. The following table present the distribution of calcium in grams that was measured from 29 small cups of Yogurt.

Protein contents	Frequency
(in grams)	
0-<10	2
10-<20	3
20-<30	9
30-<40	8
40-<50	7

Agricultural Statistics (AGS520S)

2.2.1	Estimate the average calcium for the Yogurt	[3]
2.2.2	Estimate the median calcium for the Yogurt	[3]
2.2.3	Estimate the mode of calcium for the Yogurt	[3]
2.2.4	Estimate the variance and the standard deviation of calcium for the Yogurt	[6]

2.3

х	1	2	3	4	5	6
P(X)	0.13	0.31	0.28	0.06	0.10	0.12

The random variable X represents the number of milk bottles purchased and P(X) represent the probability that a customer will buy X bottles of milk.

- 2.3.1 Calculate the mean number of milk bottles purchased by a customer per week [3]
- 2.3.2 Calculate the variance for the number of milk bottles the customer purchased [4]
- 2.3.3 What is the probability that at least five bottles of milk were purchased [2]
- 2.4 A statistics instructor tracks the calls and texts that he receives on his cell phone over a month. His results are as follows.

	Contact Source							
	Family Member	Opinion Survey	Scam Artist	Wrong Number				
Type of message					Total			
Phone call	7	10	13	6	36			
Message	8	4	8	4	24			
Total	15	14	21	10	60			

- 2.4.1 What is the probability that the instructor will receive a message from a family member? [2]
- 2.4.2 What is the probability that the instructor received a message or a phone call? [2]
- 2.4.3 What is the probability that the instructor will received a message given that it was from a Scam Artist? [3]

Agricultural Statistics (AGS520S)

2nd Opportunity- January 2024

2.4.4 Are the events Phone call and Wrong number independent?

QUESTION 3	(28 marks)
------------	------------

3.1 It is assumed that a sampling error of no more than ±0.03 is desired along with 95% confidence to determine a sample size appropriate to estimate the mean weights of lambs soon after birth for farm A. Past data indicated that the standard deviations of the weight have been approximately 2Kg for substantial period.

Calculate the sample size needed

- 3.2 You sample 36 apples from your farm's harvest of over 200 000 apples. The mean weight of the population is 112 grams (with a 40-gram population standard deviation). What is the probability that the sample mean weight of the apples is less than 120 grams?
 [3]
- 3.3 During December 2019, rainfall figures were recorded over 9 farms in the Kunene region.

Farm	A	В	C	D	E	F	G	Н	1
Rain fall (mm)	35	21	33	24	30	36	27	39	25

- 3.3.1 At the 10% level of significance test the hypothesis that the average rainfall in Kunene was above 25 mm. [8]
- 3.3.2 Construct a 90% confidence interval to estimate the mean rainfall amount for the Kunene region. [6]
- 3.3.3 What assumption must be made to be sure that the confidence interval in (3.3.2) above is valid? [2]
- 3.4 The variance for the heights (in m^2) of a random sample of 10 paw paw trees was found to be 0.36 m when grown in a natural environment.
- 3.4.1 Estimate the variance of the entire population of paw paw trees with a 90% degree of confidence. [6]

Agricultural Statistics (AGS520S)

2nd Opportunity- January 2024

7

[3]

[3]

4.1 A food services manager for a baseball park wants to know if there is a relationship between gender (male or female) and the preferred condiment on a hot dog. The following table summarizes the results.

			Condir	nent	
		Ketchup	Mustard	Relish	Total
Gender	Male	15	23	10	48
	Female	25	19	8	52
	Total	40	42	18	100

Test the hypothesis to determine if there is a relationship between gender and condiment on a hot dog using a significance level of 10%. [7]

Z - Table

The table shows cumulative probabilities for the standard normal curve.

Cumulative probabilities for NEGATIVE z-values are shown first. SCROLL DOWN to the 2nd page for POSITIVE z

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
-0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
-0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994		.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

Cumulative probabilities for POSITIVE z-values are shown below.

 *

TABLE of CRITICAL VALUES for STUDENT'S t DISTRIBUTIONS

×

¥ 2

Column headings denote probabilities (α) above tabulated values.												
d.f.	0.40	0.25	0.10	0.05	0.04	0.025	0.02	0.01	0.005	0.0025	0.001	0.0005
1	0.325	1.000	3.078	6.314	7.916	12.706	15.894	31.821	63.656	127.321	318.289	636.578
2	0.289	0.816	1.886	2.920	3.320	4.303	4.849	6.965	9.925	14.089	22.328	31.600
3	0.277	0.765	1.638	2.353	2.605	3.182	3.482	4.541	5.841	7.453	10.214	12.924
4	0.271	0.741	1.533	2.132	2.333	2.776	2.999	3.747	4.604	5.598	7.173	8.610
5	0.267	0.727	1.476	2.015	2.191	2.571	2.757	3.365	4.032	4.773	5.894	6.869
6	0.265	0.718	1.440	1.943	2.104	2.447	2.612	3.143	3.707	4.317	5.208	5.959
7	0.263	0.711	1.415	1.895	2.046	2.365	2.517	2.998	3.499	4.029	4.785	5.408
8	0.262	0.706	1.397	1.860	2.004	2.306	2.449	2.896	3.355	3.833	4.501	5.041
9	0.261	0.703	1.383	1.833	1.973	2.262	2.398	2.821	3.250	3.690	4.297	4.781
10	0.260	0.700	1.372	1.812	1.948	2.228	2.359	2.764	3.169	3.581	4.144	4.587
11	0.260	0.697	1.363	1.796	1.928	2.201	2.328	2.718	3.106	3.497	4.025	4.437
12	0.259	0.695	1.356	1.782	1.912	2.179	2.303	2.681	3.055	3.428	3.930	4.318
13	0.259	0.694	1.350	1.771	1.899	2.160	2.282	2.650	3.012	3.372	3.852	4.221
14	0.258	0.692	1.345	1.761	1.887	2.145	2.264	2.624	2.977	3.326	3.787	4.140
15	0.258	0.691	1.341	1.753	1.878	2.131	2.249	2.602	2.947	3.286	3.733	4.073
16	0.258	0.690	1.337	1.746	1.869	2.120	2.235	2.583	2.921	3.252	3.686	4.015
17	0.257	0.689	1.333	1.740	1.862	2.110	2.224	2.567	2.898	3.222	3.646	3.965
18	0.257	0.688	1.330	1.734	1.855	2.101	2.214	2.552	2.878	3.197	3.610	3.922
19	0.257	0.688	1.328	1.729	1.850	2.093	2.205	2.539	2.861	3.174	3.579	3.883
20	0.257	0.687	1.325	1.725	1.844	2.086	2.197	2.528	2.845	3.153	3.552	3.850
21	0.257	0.686	1.323	1.721	1.840	2.080	2.189	2.518	2.831	3.135	3.527	3.819
22	0.256	0.686	1.321	1.717	1.835	2.074	2.183	2.508	2,819	3.119	3.505	3,792
23	0.256	0.685	1.319	1.714	1.832	2.069	2.177	2.500	2.807	3.104	3.485	3.768
24	0.256	0.685	1.318	1.711	1.828	2.064	2.172	2.492	2.797	3.091	3.467	3.745
25	0.256	0.684	1.316	1.708	1.825	2.060	2.167	2.485	2.787	3.078	3.450	3.725
26	0.256	0.684	1.315	1.706	1.822	2.056	2.162	2.479	2.779	3.067	3.435	3.707
27	0.256	0.684	1.314	1.703	1.819	2.052	2.158	2.473	2.771	3.057	3.421	3,689
28	0.256	0.683	1.313	1.701	1.817	2.048	2.154	2.467	2.763	3.047	3.408	3.674
29	0.256	0.683	1.311	1.699	1.814	2.045	2.150	2.462	2.756	3.038	3.396	3,660
30	0.256	0.683	1.310	1.697	1.812	2.042	2.147	2.457	2.750	3.030	3.385	3.646
31	0.256	0.682	1.309	1.696	1.810	2.040	2.144	2.453	2.744	3.022	3.375	3.633
32	0.255	0.682	1.309	1.694	1.808	2.037	2.141	2.449	2.738	3.015	3.365	3.622
33	0.255	0.682	1.308	1.692	1.806	2.035	2.138	2.445	2.733	3.008	3.356	3.611
34	0.255	0.682	1.307	1.691	1.805	2.032	2.136	2.441	2.728	3.002	3.348	3.601
35	0.255	0.682	1.306	1.690	1.803	2.030	2.133	2.438	2.724	2.996	3.340	3.591
36	0.255	0.681	1.306	1.688	1.802	2.028	2.131	2.434	2.719	2.990	3.333	3.582
37	0.255	0.681	1.305	1.687	1.800	2.026	2.129	2.431	2.715	2.985	3.326	3.574
38	0.255	0.681	1.304	1.686	1.799	2.024	2.127	2.429	2.712	2.980	3.319	3.566
39	0.255	0.681	1.304	1.685	1.798	2.023	2.125	2.426	2.708	2.976	3.313	3.558
40	0.255	0.681	1.303	1.684	1.796	2.021	2.123	2.423	2.704	2.971	3.307	3.551
60	0.254	0.679	1.296	1.671	1.781	2.000	2.099	2.390	2.660	2.915	3.232	3.460
80	0.254	0.678	1.292	1.664	1.773	1.990	2.088	2.374	2.639	2.887	3.195	3.416
100	0.254	0.677	1.290	1.660	1.769	1.984	2.081	2.364	2.626	2.871	3.174	3.390
120	0.254	0.677	1.289	1.658	1.766	1.980	2.076	2.358	2.617	2.860	3.160	3.373
140	0.254	0.676	1.288	1.656	1.763	1.977	2.073	2.353	2.611	2.852	3.149	3.361
160	0.254	0.676	1.287	1.654	1.762	1.975	2.071	2.350	2.607	2.847	3.142	3.352
180	0.254	0.676	1.286	1.653	1.761	1.973	2.069	2.347	2.603	2.842	3.136	3.345
200	0.254	0.676	1.286	1.653	1.760	1.972	2.067	2.345	2.601	2.838	3.131	3.340
250	0.254	0.675	1.285	1.651	1.758	1.969	2.065	2.341	2.596	2.832	3.123	3.330
inf	0.253	0.674	1.282	1.645	1.751	1.960	2.054	2.326	2.576	2.807	3.090	3.290

		89	. 		J	\mathbb{Z}	×		- 				
							X ²						
dſ\p	.995	.990	.975	.950	.900	.750	.500	.250	.100	.050	.025	.010	.005
1	0.00004	0.00016	0.00098	0.00393	0.01579	0.10153	0.45494	1.32330	2.70554	3.84146	5.02389	6.63490	7.87944
2	0.01003	0.02010	0.05064	0.10259	0.21072	0.57536	1.38629	2.77259	4.60517	5.99146	7.37776	9.21034	10.59663
3	0.07172	0.11483	0.21580	0.35185	0.58437	1.21253	2.36597	4.10834	6.25139	7.81473	9.34840	11.34487	12.83816
4	0.20699	0.29711	0.48442	0.71072	1.06362	1.92256	3.35669	5.38527	7.77944	9.48773	11.14329	13.27670	14.86026
5	0.41174	0.55430	0.83121	1.14548	1.61031	2.67460	4.35146	6.62568	9.23636	11.07050	12.83250	15.08627	16.74960
6	0.67573	0.87209	1.23734	1.63538	2.20413	3.45460	5.34812	7.84080	10.64464	12.59159	14.44938	16.81189	18.54758
7	0.98926	1.23904	1.68987	2.16735	2.83311	4.25485	6.34581	9.03715	12.01704	14.06714	16.01276	18.47531	20.27774
8	1.34443	1.64650	2.17973	2.73264	3.48954	5.07064	7.34412	10.21885	13.36157	15.50731	17.53455	20.09024	21.95495
9	1.73493	2.08790	2.70039	3.32511	4.16816	5.89883	8.34283	11.38875	14.68366	16.91898	19.02277	21.66599	23.58935
10	2.15586	2.55821	3.24697	3.94030	4.86518	6.73720	9.34182	12.54886	15.98718	18.30704	20.48318	23.20925	25.18818
11	2.60322	3.05348	3.81575	4.57481	5.57778	7.58414	10.34100	13.70069	17.27501	19.67514	21.92005	24.72497	26.75685
12	3.07382	3.57057	4.40379	5.22603	6.30380	8.43842	11.34032	14.84540	18.54935	21.02607	23.33666	26.21697	28.29952
13	3.56503	4.10692	5.00875	5.89186	7.04150	9.29907	12.33976	15.98391	19.81193	22.36203	24.73560	27.68825	29.81947
14	4.07467	4.66043	5.62873	6.57063	7.78953	10.16531	13.33927	17.11693	21.06414	23.68479	26.11895	29.14124	31.31935
15	4.60092	5.22935	6.26214	7.26094	8.54676	11.03654	14.33886	18.24509	22.30713	24.99579	27.48839	30.57791	32.80132
16	5.14221	5.81221	6.90766	7.96165	9.31224	11.91222	15.33850	19.36886	23.54183	26.29623	28.84535	31.99993	34.26719
17	5.69722	6.40776	7.56419	8.67176	10.08519	12.79193	16.33818	20.48868	24.76904	27.58711	30.19101	33.40866	35.71847
18	6.26480	7.01491	8.23075	9.39046	10.86494	13.67529	17.33790	21.60489	25.98942	28.86930	31.52638	34.80531	37.15645
19	6.84397	7.63273	8.90652	10.11701	11.65091	14.56200	18.33765	22.71781	27.20357	30.14353	32.85233	36.19087	38.58226
20	7.43384	8.26040	9.59078	10.85081	12.44261	15.45177	19.33743	23.82769	28.41198	31.41043	34.16961	37.56623	39.99685
21	8.03365	8.89720	10.28290	11.59131	13.23960	16.34438	20.33723	24.93478	29.61509	32.67057	35.47888	38.93217	41.40106
22	8.64272	9.54249	10.98232	12.33801	14.04149	17.23962	21.33704	26.03927	30.81328	33.92444	36.78071	40.28936	42.79565
23	9.26042	10.19572	11.68855	13.09051	14.84796	18.13730	22.33688	27.14134	32.00690	35.17246	38.07563	41.63840	44.18128
24	9.88623	10.85636	12.40115	13.84843	15.65868	19.03725	23.33673	28.24115	33.19624	36.41503	39.36408	42.97982	45.55851
25	10.51965	11.52398	13.11972	14.61141	16.47341	19.93934	24.33659	29.33885	34.38159	37.65248	40.64647	44.31410	46.92789
26	11.16024	12.19815	13.84390	15.37916	17.29188	20.84343	25.33646	30.43457	35.56317	38.88514	41.92317	45.64168	48.28988
27	11.80759	12.87850	14.57338	16.15140	18.11390	21.74940	26.33634	31.52841	36.74122	40.11327	43.19451	46.96294	49.64492
28	12.46134	13.56471	15.30786	16.92788	18.93924	22.65716	27.33623	32.62049	37.91592	41.33714	44.46079	48.27824	50.99338
29	13.12115	14.25645	16.04707	17.70837	19.76774	23.56659	28.33613	33.71091	39.08747	42.55697	45.72229	49.58788	52.33562
30	13.78672	14.95346	16.79077	18.49266	20.59923	24.47761	29.33603	34.79974	40.25602	43.77297	46.97924	50.89218	53.67196

APPENDIX E: The Chi-Square Distribution

£

FORMULA SHEET	
$M_e = L + \frac{c[0.5n - CF]}{f_{me}}$	$M_0 = L + \frac{c[f_m - f_{m-1}]}{2f_m - f_{m-1} - f_{m+1}}$
$\bar{x} = \frac{\sum fx}{n}$	$Z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$
$\bar{x} \pm Z_{\frac{\alpha}{2}}(\frac{\sigma}{\sqrt{n}})$	$(p_1 - p_2) \pm Z_{\frac{\alpha}{2}}(\sqrt{\frac{p_1q_1}{n_1} + \frac{p_2q_2}{n_2}})$
$t_{stat} = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}}$	$\frac{(n-1)S^2}{\chi^2 \frac{\alpha}{2}, n-1} < \sigma^2 < \frac{(n-1)S^2}{\chi^2 \frac{\alpha}{1-\frac{\alpha}{2}, n-1}}$
$\chi^2_{stat} = \frac{(n-1)S^2}{\sigma^2}$	$\chi^2_{stat} = \sum \frac{(f_0 - f_e)^2}{f_e}$
$E(X) = \sum x_i p_i$	$V(X) = \sum (x_i - \mu)^2 p(x_i)$
$P(X = x) = \binom{n}{x} p^{x} q^{n-x}$	$n = \frac{Z^2(\sigma^2)}{E^2}$
$b = \frac{n\sum xy - \sum x\sum y}{n\sum x^2 - (\sum x)^2}$	$a = \bar{y} - b\bar{x}$
	$Z_{cal} = \frac{(p_1 - p_2) - (\pi_1 - \pi_2)}{(p_1 - p_2) - (\pi_1 - \pi_2)}$
$\widehat{\pi} = \frac{x_1 + x_2}{n_1 + n_2}$	$\sqrt{\hat{\pi}(1-\hat{\pi})}\left(\frac{1}{n_1}+\frac{1}{n_2}\right)$
$\bar{x} = \frac{\sum x}{n}$	$s^2 = \frac{\sum (x_i - \bar{x})^2}{n - 1}$
$n = \frac{z^2 p(1-p)}{F^2}$	$\sum (x_i - \bar{x})^2 f_i$
	$S^2 = \frac{1}{n-1}$
$p \pm z \sqrt{\frac{pq}{n}}$	$\bar{x} \pm t_{\frac{\alpha}{2},n-1}(\frac{s}{\sqrt{n}})$
$Z = \frac{x - \mu}{\sigma}$	$(\bar{x}_1 - \bar{x}_2) \pm t \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
$P(X=k) = \frac{e^{-\theta}\theta^x}{x!}$	$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \bar{\mu}_2)}{\sqrt{2}}$
	$\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$

$$p \pm Z_{\frac{\alpha}{2}}(\sqrt{\frac{pq}{n}})$$
 $f_e = \frac{RT \times CT}{GT}$