

ПАПІВІА UNIVERSITY OF SCIENCE AND TECHNOLOGY

Faculty of Health, Natural **Resources and Applied** Sciences

School of Natural and Applied Sciences

Department of Biology, **Chemistry and Physics**

 13 Jackson Kaujeua Street
 T: +264 61 207 2012

 Private Bag 13388
 F: +264 61 207 9012

 Windhoek
 E: dbcp@nust.na
 NAMIBIA

W: www.nust.na

QUALIFICATION : BACHELOR OF SCIENCE	
QUALIFICATION CODE: 07BOSC	LEVEL: 5
COURSE: GENERAL CHEMISTRY 1B	COURSE CODE: GNC502S
DATE: JANUARY 2024	SESSION: 1
DURATION: 3 HOURS	MARKS: 100

SECOND OPPORTUNITY: QUESTION PAPER

EXAMINER: DR MARIUS MUTORWA

MODERATOR: DR MPINGANA AKAWA

INSTRUCTIONS

- 1. Answer all questions on the separate answer sheet.
- 2. Please write neatly and legibly.
- 3. Do not use the left side margin of the exam paper. This must be allowed for the examiner.
- 4. No books, notes and other additional aids are allowed.
- 5. Mark all answers clearly with their respective question numbers.

PERMISSIBLE MATERIALS:

1. Non-Programmable Calculator

ATTACHEMENTS

- 1. Useful Constants
- 2. Periodic Table

This paper consists of 10 pages including this front page

SECTION A

QUESTION 1: MULTIPLE CHOICE QUESTIONS

Evaluate the statements in each numbered section and select the most appropriate answer or phrase from the given possibilities. Fill in the appropriate letter next to the number of the correct statement/phrase on your ANSWER SHEET.

1.1 The reduction of NO to N₂ with H₂: 2NO (g) + 2H₂ (g) \rightarrow N₂ (g) + 2H₂O (g), is found to have the following experimentally determined rate equation: Rate = k[NO]²[H₂]. What is the order of the reaction with respect to NO?

- A. 0
- B. 1
- C. 2
- D. 3

1.2 If the concentration of NO is doubled and that of and H_2 is constant, the rate of the reaction would:

- A. Decrease four fold
- B. Increase four fold
- C. Increase two fold
- D. Decrease two fold

1.3 For the reaction:

 $2NaHCO_3 (s) \Leftrightarrow Na_2CO_3 (s) + CO_2 (g) + H_2O (g)$

Which one of the following is the correct expression for Kc?

- A. $Kc = [CO_2][H_2O]$
- B. $Kc = [CO_2]$
- C. $Kc = [CO_2][H_2O][Na_2CO_3]/[NaHCO_3]^2$
- D. $Kc = [CO_2][Na_2CO_3]/[NaHCO_3]^2$

1.4 The table below gives the initial concentrations and rate for three experiments. The reaction is $CO + Cl_2 \rightarrow COCl_2$. What is the rate law for this reaction?

Experiment	[CO] (M)	[Cl ₂] (M)	Initial Rate of COCl ₂ (M min ⁻¹)					
1	0.30	0.10	2.1 × 10 ⁻²⁵					
2	0.10	0.30	2.1 x 10 ⁻²⁵					
3	0.30	0.30	6.3 x 10 ⁻²⁵					

[60]

- A. Rate = $k[CO][Cl_2]$
- B. Rate = $k[CO]^2[Cl_2]$
- C. Rate = k[CO]
- D. Rate = $k[CO][Cl_2]^2$

1.5 For which of the following reactions does K_c = K_p at 25°C?

- A. $2NH_3(g) + CO_2(g) \Leftrightarrow N_2CH_4O(s) + H_2O(g)$
- B. $2NBr_3(s) \Leftrightarrow N_2(g) + 3Br_2(g)$
- C. $2KCIO_3(s) \Leftrightarrow 2KCI(s) + 3O_2(g)$
- D. $CuO(s) + H_2(g) \Leftrightarrow Cu(l) + H_2O(g)$

1.6 In the Copper Oxide (CuO) and Carbon Monoxide (CO) reaction, reducing agent is:

- A. CuO
- B. CO
- C. Cu
- $D. CO_2$

1.7 In which of the following unbalanced reactions does chromium undergo oxidation?

- A. $Cr^{3+} \rightarrow Cr$
- B. $Cr^{3+} \rightarrow Cr^{2+}$
- C. $Cr^{3+} \rightarrow Cr_2O_7^{2-}$
- D. None of the above

1.8 The oxidation number of each chromium atom in $Cr_2O_7^{2-}$ is:

- A. +5
- B. +6
- C. +7
- D. +12

1.9 The pH of a 1.25 x 10⁻³ M NaOH is:

- A. 7.00
- B. 2.90
- C. 11.10
- D. 10.90

1.10 Which of the following describes the relationship between $[H_3O^+]$ and $[OH^-]$?

- A. $[H_3O^+][OH^-] = 14.00$
- B. H_3O^+] + [OH^-] = 14.00
- C. $[H_3O^+][OH^-] = 1.0 \times 10^{-14}$
- D. $[H_3O^+] + [OH^-] = 1.0 \times 10^{-14}$

1.11 Which compound has the highest boiling point?

1.12 What is the correct IUPAC name for the compound shown below?

- A. 3-methyl-4-(1-methylethyl)-5-(propyl)-6-(dimethyl) octane
- B. 4-(1,1-dimethylpropyl)-5-(1-methylethyl)-6-(methyl) nonane
- C. 3-methyl-4-(1-methylethyl)-5-(1,1-dimethylpropyl) octane
- D. 3-methyl-4-(1,1-dimethyl)-5-(1,1-dimethylpropyl) nonane

1.13 Which one of the following compounds is an isomer of CH₃CH₂CH₂CH₂CH₂OH?

D. Compounds B and C above General Chemistry 1B (GNC502S) 1.14 What is the condensed formula of the compound below?

- A. CH₃CH₂CH(CH₃)CH₂CH(CH₃)CHBr₂
- B. CH₃CH₂CH₂(CH₃)CH₂CH(CH₃)CHBr₂
- C. CH₃CH₂CH(CH₃)CH(CH₃)CH₂CHBr₂
- D. None of the above structures are correct

1.15 How many isomers of C2H2Cl2 are polar?

- A. 0
- B. 1
- C. 2
- D. 3

1.16 What is the correct molecular geometry for SeBr3+?

- A. trigonal pyramidal
- B. tetrahedral
- C. trigonal planar
- D. T-shaped

1.17 PCl5 has ______ electron domains and a ______ molecular arrangement.

- A. 6 and trigonal bipyramidal
- B. 6 and seesaw
- C. 5 and square pyramidal
- D. 5 and trigonal bipyramidal

1.18 Which of the following statement(s) is/are correct in describing an orbital?

I. a region of high electron density.
II. a region in an atom where an electron is likely to be found.
III. a wave function resulting from specific values assigned to quantum numbers in wave equations.
IV. a spherical region around a nucleus where an electron can be found.

General Chemistry 1B (GNC502S)

2nd Opportunity January 2024

5

- A. II only
- B. I and II
- C. I, II and III
- D. I, II, III and IV

1.19 The statement that the first ionization energy for an oxygen atom is lower than the first ionization energy for a nitrogen atom is:

- A. Inconsistent with the general trend relating changes in ionization energy across a period from left to right and due to the fact that oxygen has one doubly occupied 2p orbital and nitrogen does not.
- B. Consistent with the general trend relating changes in ionization energy across a period from left to right because it is harder to take an electron from an oxygen atom than from a nitrogen atom.
- C. Consistent with the general trend relating changes in ionization energy across a period from left to right because it is easier to take an electron from an oxygen atom than from a nitrogen atom.
- D. Inconsistent with the general trend relating changes in ionization energy across a period from left to right and due to the fact that the oxygen atom has two doubly occupied 2p orbitals and nitrogen has only one.
- 1.20 What species has the electron configuration [Ar]3d²?
 - A. Mn²⁺
 - B. Cr²⁺
 - c. v³⁺
 - D. Fe³⁺

END OF SECTION A

SECTION B: SHORT/LONG ANSWER QUESTIONS

Please answer ALL of the questions in this section.

QUESTION 2

2.1 Calculate the oxidation numbers of the underlined elements in the following compounds.(5)

- A. <u>N</u>O₂
- B. <u>N</u>₂O₅
- C. <u>H</u>ClO₃
- D. HNO_3
- E. <u>Ca(NO₃)</u>₂
- 2.2 Write a balanced ionic equation to represent the oxidation of iodide ion (I⁻) by permanganate ion (MnO₄⁻) in basic solution to yield molecular iodine (I₂) and manganese (IV) oxide (MnO₂).

$$MnO_4^{-} + I^{-} \rightarrow MnO_2 + I_2$$

QUESTION 3

Propanoic acid (CH₃CH₂COOH, which we simplify and HPr) is an organic acid whose salts are used to retard mold growth in foods. What is the [H₃O⁺] of 0.10 M HPr ($K_a = 1.3 \times 10^{-5}$)?

 $HPr(aq) + H_2O(l) \rightarrow H_3O^+(aq) + Pr^-(aq)$

QUESTION 4

4.1 The lactic acid molecule, CH₃CH(OH)COOH, gives sour milk its unpleasant, sour taste.

- A. Draw the skeletal structure for the molecule, assuming carbon always forms four bonds in its stable compounds. (3)
 B. How many π and σ are in the molecule? (2)
- C. What is the hybridization of atomic orbitals around the carbon atom associated with the shortest bond in the molecule? (2)

[15]

[40 MARKS]

[10]

(10)

[15]

D. What is the bond angle around the carbon atom associated with the shortest bond in the molecule? (1)

4.2 The line-bond structure shown below is the compound aspartame, an artificial sweetener commonly used as a sugar substitute in foods and beverages.

Aspartame

- A. What is the correct molecular formula for aspartame? (2)
- B. Identify the functional groups present in aspartame. (5)

END OF QUESTION PAPER

USEFUL CONSTANTS

Gas constant, R = 8.3145 J · mol⁻¹ · K⁻¹ = 0.083145 dm³ · bar · mol⁻¹ · K⁻¹ = 0.08206 L atm mol⁻¹ · K⁻¹

 $1 \text{ Pa} \cdot \text{m}^3 = 1 \text{ kPa.L} = 1 \text{ N} \cdot \text{m} = 1 \text{ J}$

1 atm = 101 325 Pa = 760 mmHg = 760 torr

Avogadro's Number, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Planck's constant, $h = 6.626 \times 10^{-34} Js$

Speed of light, c = 2.998 x 10⁸ ms⁻¹

1																	18
1																	2
H	2											12	14	16	14	17	He
1.00794	2	1										15	14	15	10	17	4.00260
3	4											5	6	7	8	9	10
Li	Be											B	C	N	0	F	Ne
6.941	9.01218											10.81	12.011	14.0067	15.9994	18.9984	20.179
11	12											13	14	15	16	17	18
Na	Mg			-						12020		Al	Si	P	S	Cl	Ar
22.9898	24.305	3	4	5	6	7	8	9	10	11	12	26.9815	28.0855	30.9738	32.06	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co.	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.0983	40.08	44.9559	47.88	50.9415	51.996	54.9380	55.847	58.9332	58.69	63.546	65.38	69.72	72.59	74.9216	78.96	79.904	83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.4678	87.62	88.9059	91.22	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.41	114.82	118.69	121.75	127.6	126.9	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Hſ	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.905	137.33	174.967	178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.2	208.908	(209)	(210)	(222)
87	88	103	104	105	106	107	108	109	110	111	112		114		116		118
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq		Uuh		Uuo
(223)	226.025	(260)	(261)	(262)	(263)	(264)	(265)	(268)	(269)	(272)	(269)						
		Lanth	anides:	57	58	50	60	61	62	63	64	65	66	67	68	60	70
				I	Co	Du	Na	Dm	6	105 10-	Ca	Th	D	TX-	E.	70	NUL I
				128 006	140.12	140 008	144.24	FIII (145)	5111	151.06	Gu	10	162.60	HO	Er	IM	YD
												173.04					
	Actinidae		des:	80	90	91	92	03	94	05	06	07	02	00 1	100	101	102
				40	Th	Do	JZ II	Nn	Du	A	Cm	D1.	20	77	TUU I		IUZ
				227 020	222 020	221 026	228 020	227 049	FU (244)	AIII	Cm	DK	CI	ES (252)	F M	IVIC	0110
				221.020	232.030	231.030	230.029	237.040	(244)	(243)	(247)	(247)	(251)	(232)	(257)	(238)	(239)

PERIODIC TABLE OF THE ELEMENTS

10