ПАПIBIA UחIVERSITY
Faculty of Health, Natural

Resources and Applied

Sciences
School of Natural and Applied
Sciences
Department of Biology,
Chemistry and Physics

QUALIFICATION: BACHELOR OF SCIENCE

QUALIFICATION CODE: 07BOSC	LEVEL: 5
COURSE: GENERAL CHEMISTRY 1B	COURSE CODE: GNC502S
DATE: JANUARY 2024	SESSION: $\mathbf{1}$
DURATION: $\mathbf{3}$ HOURS	MARKS: $\mathbf{1 0 0}$

SECOND OPPORTUNITY: QUESTION PAPER

EXAMINER: DR MARIUS MUTORWA
MODERATOR: DR MPINGANA AKAWA

INSTRUCTIONS

1. Answer all questions on the separate answer sheet.
2. Please write neatly and legibly.
3. Do not use the left side margin of the exam paper. This must be allowed for the examiner.
4. No books, notes and other additional aids are allowed.
5. Mark all answers clearly with their respective question numbers.

PERMISSIBLE MATERIALS:

1. Non-Programmable Calculator

ATTACHEMENTS

1. Useful Constants
2. Periodic Table

This paper consists of 10 pages including this front page

QUESTION 1: MULTIPLE CHOICE QUESTIONS

Evaluate the statements in each numbered section and select the most appropriate answer or phrase from the given possibilities. Fill in the appropriate letter next to the number of the correct statement/phrase on your ANSWER SHEET.
1.1 The reduction of NO to N_{2} with $\mathrm{H}_{2}: 2 \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, is found to have the following experimentally determined rate equation: Rate $=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right]$. What is the order of the reaction with respect to NO?
A. 0
B. 1
C. 2
D. 3
1.2 If the concentration of NO is doubled and that of and H_{2} is constant, the rate of the reaction would:
A. Decrease four fold
B. Increase four fold
C. Increase two fold
D. Decrease two fold
1.3 For the reaction:

$$
2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \leftrightharpoons \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Which one of the following is the correct expression for Kc ?
A. $\mathrm{Kc}=\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]$
B. $\mathrm{Kc}=\left[\mathrm{CO}_{2}\right]$
C. $\mathrm{Kc}=\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]\left[\mathrm{Na}_{2} \mathrm{CO}_{3}\right] /\left[\mathrm{NaHCO}_{3}\right]^{2}$
D. $\mathrm{Kc}=\left[\mathrm{CO}_{2}\right]\left[\mathrm{Na}_{2} \mathrm{CO}_{3}\right] /\left[\mathrm{NaHCO}_{3}\right]^{2}$
1.4 The table below gives the initial concentrations and rate for three experiments. The reaction is $\mathrm{CO}+\mathrm{Cl}_{2} \rightarrow \mathrm{COCl}_{2}$. What is the rate law for this reaction?

Experiment	$[\mathrm{CO}](\mathrm{M})$	$\left[\mathrm{Cl}_{2}\right](\mathrm{M})$	Initial Rate of $\mathrm{COCl}_{2}\left(\mathrm{M} \mathrm{min}^{-1}\right)$
1	0.30	0.10	2.1×10^{-25}
2	0.10	0.30	2.1×10^{-25}
3	0.30	0.30	6.3×10^{-25}

A. Rate $=\mathrm{k}[\mathrm{CO}]\left[\mathrm{Cl}_{2}\right]$
B. Rate $=\mathrm{k}[\mathrm{CO}]^{2}\left[\mathrm{Cl}_{2}\right]$
C. Rate $=\mathrm{k}[\mathrm{CO}]$
D. Rate $=\mathrm{k}[\mathrm{CO}]\left[\mathrm{Cl}_{2}\right]^{2}$
1.5 For which of the following reactions does $\mathrm{K}_{\mathrm{c}}=\mathrm{K}_{\mathrm{p}}$ at $25^{\circ} \mathrm{C}$?
A. $2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \leftrightharpoons \mathrm{N}_{2} \mathrm{CH}_{4} \mathrm{O}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
B. $2 \mathrm{NBr}_{3}(\mathrm{~s}) \leftrightharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{Br}_{2}(\mathrm{~g})$
C. $2 \mathrm{KClO}_{3}(\mathrm{~s}) \leftrightharpoons 2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$
D. $\mathrm{CuO}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g}) \leftrightharpoons \mathrm{Cu}(I)+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
1.6 In the Copper Oxide (CuO) and Carbon Monoxide (CO) reaction, reducing agent is:
A. CuO
B. CO
C. Cu
D. CO_{2}
1.7 In which of the following unbalanced reactions does chromium undergo oxidation?
A. $\mathrm{Cr}^{3+} \rightarrow \mathrm{Cr}$
B. $\mathrm{Cr}^{3+} \rightarrow \mathrm{Cr}^{2+}$
C. $\mathrm{Cr}^{3+} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
D. None of the above
1.8 The oxidation number of each chromium atom in $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ is:
A. +5
B. +6
C. +7
D. +12
1.9 The pH of a $1.25 \times 10^{-3} \mathrm{M} \mathrm{NaOH}$ is:
A. 7.00
B. 2.90
C. 11.10
D. 10.90
1.10 Which of the following describes the relationship between $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$?
A. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=14.00$
B. $\left.\mathrm{H}_{3} \mathrm{O}^{+}\right]+\left[\mathrm{OH}^{-}\right]=14.00$
C. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$
D. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$
1.11 Which compound has the highest boiling point?
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
a)

b)

c)

d)
1.12 What is the correct IUPAC name for the compound shown below?

A. 3-methyl-4-(1-methylethyl)-5-(propyl)-6-(dimethyl) octane
B. 4-(1,1-dimethylpropyl)-5-(1-methylethyl)-6-(methyl) nonane
C. 3-methyl-4-(1-methylethyl)-5-(1,1-dimethylpropyl) octane
D. 3-methyl-4-(1,1-dimethyl)-5-(1,1-dimethylpropyl) nonane
1.13 Which one of the following compounds is an isomer of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$?
A. $\mathrm{CH}_{3} \mathrm{CHCH}_{3}$
B.

C.

D. Compounds B and C above
1.14 What is the condensed formula of the compound below?

A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CHBr}_{2}$
B. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CHBr}_{2}$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CHBr}_{2}$
D. None of the above structures are correct
1.15 How many isomers of $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}$ are polar?
A. 0
B. 1
C. 2
D. 3
1.16 What is the correct molecular geometry for $\mathrm{SeBr}_{3}{ }^{+}$?
A. trigonal pyramidal
B. tetrahedral
C. trigonal planar
D. T-shaped
1.17 PCl_{5} has \qquad electron domains and a \qquad molecular arrangement.
A. 6 and trigonal bipyramidal
B. 6 and seesaw
C. 5 and square pyramidal
D. 5 and trigonal bipyramidal
1.18 Which of the following statement(s) is/are correct in describing an orbital?
I. a region of high electron density.
II. a region in an atom where an electron is likely to be found.
III. a wave function resulting from specific values assigned to quantum numbers in wave equations.
IV. a spherical region around a nucleus where an electron can be found.
A. II only
B. I and II
C. I, II and III
D. I, II, III and IV
1.19 The statement that the first ionization energy for an oxygen atom is lower than the first ionization energy for a nitrogen atom is:
A. Inconsistent with the general trend relating changes in ionization energy across a period from left to right and due to the fact that oxygen has one doubly occupied $2 p$ orbital and nitrogen does not.
B. Consistent with the general trend relating changes in ionization energy across a period from left to right because it is harder to take an electron from an oxygen atom than from a nitrogen atom.
C. Consistent with the general trend relating changes in ionization energy across a period from left to right because it is easier to take an electron from an oxygen atom than from a nitrogen atom.
D. Inconsistent with the general trend relating changes in ionization energy across a period from left to right and due to the fact that the oxygen atom has two doubly occupied $2 p$ orbitals and nitrogen has only one.
1.20 What species has the electron configuration [Ar]3d2?
A. Mn^{2+}
B. Cr^{2+}
C. V^{3+}
D. Fe^{3+}

Please answer ALL of the questions in this section.

QUESTION 2

2.1 Calculate the oxidation numbers of the underlined elements in the following compounds. (5)
A. NO_{2}
B. $\mathrm{N}_{2} \mathrm{O}_{5}$
C. HClO_{3}
D. HNO_{3}
E. $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
2.2 Write a balanced ionic equation to represent the oxidation of iodide ion $\left(I^{-}\right)$by permanganate ion $\left(\mathrm{MnO}_{4}^{-}\right)$in basic solution to yield molecular iodine $\left(\mathrm{I}_{2}\right)$ and manganese (IV) oxide $\left(\mathrm{MnO}_{2}\right)$.

$$
\begin{equation*}
\mathrm{MnO}_{4}^{-}+\mathrm{I}^{-} \rightarrow \mathrm{MnO}_{2}+\mathrm{I}_{2} \tag{10}
\end{equation*}
$$

QUESTION 3

Propanoic acid $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right.$, which we simplify and HPr$)$ is an organic acid whose salts are used to retard mold growth in foods. What is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of $0.10 \mathrm{M} \mathrm{HPr}\left(\mathrm{K}_{\mathrm{a}}=1.3 \times 10^{-5}\right)$?

$$
\mathrm{HPr}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Pr}^{-}(\mathrm{aq})
$$

QUESTION 4

4.1 The lactic acid molecule, $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}$, gives sour milk its unpleasant, sour taste.
A. Draw the skeletal structure for the molecule, assuming carbon always forms four bonds in its stable compounds.
B. How many π and σ are in the molecule?
C. What is the hybridization of atomic orbitals around the carbon atom associated with the shortest bond in the molecule?
D. What is the bond angle around the carbon atom associated with the shortest bond in the molecule?
4.2 The line-bond structure shown below is the compound aspartame, an artificial sweetener commonly used as a sugar substitute in foods and beverages.

Aspartame
A. What is the correct molecular formula for aspartame?
B. Identify the functional groups present in aspartame.

USEFUL CONSTANTS

Gas constant, $\mathrm{R}=8.3145 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}=0.083145 \mathrm{dm}^{3} \cdot \mathrm{bar} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}$
$1 \mathrm{~Pa} \cdot \mathrm{~m}^{3}=1 \mathrm{kPa} . \mathrm{L}=1 \mathrm{~N} \cdot \mathrm{~m}=1 \mathrm{~J}$
$1 \mathrm{~atm}=101325 \mathrm{~Pa}=760 \mathrm{mmHg}=760 \mathrm{torr}$
Avogadro's Number, $\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Planck's constant, $\mathrm{h}=6.626 \times 10^{-34} \mathrm{Js}$
Speed of light, $\mathrm{c}=2.998 \times 10^{8} \mathrm{~ms}^{-1}$

PERIODIC TABLE OF THE ELEMENTS

1	2											13	14	15	16	17	18 $\mathbf{H e}$ $\mathbf{H e}$
1 \mathbf{H} 1.00794																	
3	4											5	6	7	8	9	10
Li	Be											B	C	N	0	F	Ne
6.941	9.01218											10.81	12.011	14.0067	15.9994	18.9984	20.179
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
22.9898	24.305	3	4	5	6	7	8	9	10	11	12	26.9815	28.0855	30.9738	32.06	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	$\mathbf{K r}$
39.0983	40.08	44.9559	47.88	50.9415	51.996	54.9380	55.847	58.9332	58.69	63.546	65.38	69.72	72.59	74.9216	78.96	79.904	83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	$\mathbf{Z r}$	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.4678	87.62	88.9059	91.22	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.41	114.82	118.69	121.75	127.6	126.9	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	$\mathbf{R n}$
132.905	137.33	174.967	178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.2	208.908	(209)	(210)	(222)
87	88	103	104	105	106	107	108	109	110	111	112		114		116		118
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq		Uuh		Uuo
(223)	226.025	(260)	(261)	(262)	(263)	(264)	(265)	(268)	(269)	(272)	(269)						

Lanthanides:

57	58	59	60	61	62	63	64	65	66	67	6	6	
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
138.906	140	140.908	144.24	(145)	150.36	151.96	157.25	158.925	162.50	161.930	167.26		173.0

Actinides:

89	90	91	92	93	94	95	96	97	98	99	100	$\mathbf{1 0 1}$	102
$\mathbf{A c}$	$\mathbf{T h}$	$\mathbf{P a}$	\mathbf{U}	$\mathbf{N p}$	$\mathbf{P u}$	$\mathbf{A m}$	$\mathbf{C m}$	$\mathbf{B k}$	$\mathbf{C f}$	$\mathbf{E s}$	$\mathbf{F m}$	$\mathbf{M d}$	$\mathbf{N o}$
227.028	$\mathbf{2 3 2 . 0 3 8}$	$\mathbf{2 3 1 . 0 3 6}$	$\mathbf{2 3 8 . 0 2 9}$	237.048	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)

