

Faculty of Health, Natural **Resources and Applied Sciences**

School of Natural and Applied Sciences

Department of Mathematics. Statistics and Actuarial Science 13 Jackson Kaujeua Street T: +264 61 207 2913 Private Bag 13388 Windhoek NAMIBIA

E: msas@nust.na W: www.nust.na

QUALIFICATIONS: BACHELOR OF SCIENCE	,
QUALIFICATION CODE: 07BOSC	LEVEL: 5
COURSE: ALGEBRA AND TRIGONOMETRY	COURSE CODE: AAT501S
DATE: NOVEMBER 2024	SESSION: 1
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY: EXAMINATION QUESTION PAPER

EXAMINER:

MR GABRIEL S MBOKOMA

MODERATOR:

DR S.N NEOSSI-NGUETCHUE

INSTRUCTIONS:

- 1. Answer all questions on the separate answer sheet.
- 2. Please write neatly and legibly.
- 3. Do not use the left side margin of the exam paper. This must be allowed for the examiner.
- 4. No books, notes and other additional aids are allowed.
- 5. Mark all answers clearly with their respective question numbers.

PERMISSIBLE MATERIALS:

Non-Programmable Calculator

This paper consists of 3 pages including this front page.

Question 1 [35 marks]

Without using a calculator.

1.1 Simplify the followings:

a)
$$\left(\frac{i^{326}-1}{i^{545}+1}\right)$$
. [7]

b)
$$\frac{1}{\sqrt[3]{x^2}}$$

c)
$$\left(\frac{2.2^x + 6.2^{x-1}}{5.4^x}\right)^{\frac{1}{x}}$$
 [5]

1.2 Find the value of x and y if,
$$(x + 2i) + i(3 - i) = 3 - yi^7$$
 [5]

1.3 Solve the following equations:

a)
$$(2+y^2)^2 = (2y\sqrt{2})^2$$
 [5]

b)
$$\log_3 \left[\left(\log_{\frac{1}{2}} x \right)^2 - 3\log_{\frac{1}{2}} x + 5 \right] = 2$$
 [5]

c)
$$ax^2 + bx + c = 0$$
 (using completing of squares method) [5]

Question 2 [37 marks]

2.2) Solve the inequalities:

a)
$$x^2 - 2x - 3 < 0$$
 [5]

b)
$$\log_{\frac{1}{3}}(3x^2) \le \log_{\frac{1}{3}}(2-5x)$$
 [6]

2.3) Given the geometric series: $8x^2 + 4x^3 + 2x^4 + \dots$

a) Determine the
$$n^{th}$$
 term of the series. [2]

b) What value(s) of
$$x$$
 will the series converge? [4]

c) Calculate the sum of the series to infinity if
$$x = \frac{3}{2}$$
. [4]

2.4) Find sum of the followings, if they exists.

$$\sum_{k=5}^{\infty} \left(\frac{1}{2}\right)^{k-1}$$

[5]

[6]

2.5) Solve:
$$\frac{3}{x} + \frac{4}{y} = \frac{5}{2}$$
 and $\frac{5}{x} - \frac{3}{y} = \frac{7}{4}$ by elimination method.

Question 3 [28 marks]

- **3.1)** If the 2^{nd} , 3^{rd} and 4^{th} terms in the expansion of $(a+b)^n$ is 240, 720 and 1080 respectively, find the value of a, b and n? [10]
- **3.2)** Decompose $\frac{1-x}{x(2x^2-x)}$ into its partial fractions. [8]

3.3) Show that
$$\frac{\sin x - \cos x}{\sin x + \cos x} = \frac{\tan x - 1}{\tan x + 1}$$
 [5]

3.4) Solve the following trigonometric equation

$$2\cos^2 x - \sqrt{2}\cos x = 0$$

[5]