

QUALIFICATION : BACHELOR OF SCIENCE	
QUALIFICATION CODE: 07BOSC	LEVEL: 5
COURSE: GENERAL CHEMISTRY 1B	COURSE CODE: GNC502S
DATE: NOVEMBER 2023	SESSION: $\mathbf{1}$
DURATION: 3 HOURS	MARKS: $\mathbf{1 0 0}$

FIRST OPPORTUNITY: QUESTION PAPER

EXAMINER: DR MARIUS MUTORWA

MODERATOR: DR MPINGANA AKAWA

INSTRUCTIONS

1. Answer all questions on the separate answer sheet.
2. Please write neatly and legibly.
3. Do not use the left side margin of the exam paper. This must be allowed for the examiner.
4. No books, notes and other additional aids are allowed.
5. Mark all answers clearly with their respective question numbers.

PERMISSIBLE MATERIALS:

1. Non-Programmable Calculator

ATTACHEMENTS

1. Useful Constants
2. Periodic Table

QUESTION 1: MULTIPLE CHOICE QUESTIONS

Evaluate the statements in each numbered section and select the most appropriate answer or phrase from the given possibilities. Fill in the appropriate letter next to the number of the correct statement/phrase on your ANSWER SHEET.
1.1 Which statement concerning relative rates of reaction is correct for this chemical equation given below?

$$
2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

A. The rate of disappearance of $\mathrm{CH}_{3} \mathrm{OH}$ is equal to the rate of disappearance of O_{2}.
B. The rate of disappearance of $\mathrm{CH}_{3} \mathrm{OH}$ is two times the rate of appearance of $\mathrm{H}_{2} \mathrm{O}$.
C. The rate of disappearance of $\mathrm{CH}_{3} \mathrm{OH}$ is half the rate of appearance of CO_{2}.
D. The rate of appearance of $\mathrm{H}_{2} \mathrm{O}$ is two times the rate of appearance of CO_{2}
1.2 Which relationship correctly compares the rates of the following reactants and products?

$$
2 \mathrm{NOCl}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

A. $-\frac{\Delta[\mathrm{NOCl}]}{\Delta t}=\frac{\Delta[\mathrm{NO}]}{\Delta t}+\frac{\Delta\left[\mathrm{Cl}_{2}\right]}{\Delta t}$
B. $\frac{\Delta[\mathrm{NOCl}]}{\Delta t}=\frac{\Delta[\mathrm{NO}]}{\Delta t}=\frac{\Delta\left[\mathrm{Cl}_{2}\right]}{\Delta t}$
C. $-\frac{1}{2} \frac{\Delta[\mathrm{NOCl}]}{\Delta t}=\frac{1}{2} \frac{\Delta[\mathrm{NO}]}{\Delta t}=\frac{\Delta\left[\mathrm{Cl}_{2}\right]}{\Delta t}$
D. $\frac{-2 \Delta[\mathrm{NOCl}]}{\Delta t}=\frac{2 \Delta[\mathrm{NO}]}{\Delta t}=\frac{\Delta\left[\mathrm{Cl}_{2}\right]}{\Delta t}$
1.3 What is the name given to a substance that increases the rate of a chemical reaction but is not itself consumed?
A. Reactant
B. Intermediate
C. Enthalpy
D. Catalyst
1.4 Write the appropriate equilibrium constant expression K_{c} for the following reaction:

$$
2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{CO}_{2}(\mathrm{~g})
$$

A. $\mathrm{K}_{\mathrm{c}}=\mathrm{k}[\mathrm{CO}]_{2}\left[\mathrm{O}_{2}\right]$
B. $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{CO}_{2}\right] /[\mathrm{CO}]\left[\mathrm{O}_{2}\right]$
C. $\mathrm{Kc}=\left[\mathrm{CO}_{2}\right]^{2} /[\mathrm{CO}]^{2}\left[\mathrm{O}_{2}\right]$
D. $\mathrm{K}_{\mathrm{c}}=[\mathrm{CO}]^{2}\left[\mathrm{O}_{2}\right] /\left[\mathrm{CO}_{2}\right]$
1.5 Write the expression for K for the reaction of hydrofluoric acid with water.

$$
\mathrm{HF}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{F}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

A. $K=\frac{\left[\mathrm{F}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{[\mathrm{HF}]}$
B. $K=\frac{\left[\mathrm{F}^{-}\right]}{[\mathrm{HF}]}$
C. $K=\frac{[\mathrm{HF}]}{\left[\mathrm{F}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}$
D. $K=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
1.6 What is the balanced equation for the following equilibrium expression?

$$
K_{\mathrm{p}}=\frac{P_{\mathrm{SO}_{3}}^{2}}{P_{\mathrm{O}_{2}} P_{\mathrm{SO}_{2}}^{2}}
$$

A. $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$
B. $2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
C. $2 \mathrm{SO}_{3}(a q) \rightleftharpoons 2 \mathrm{SO}_{2}(a q)+\mathrm{O}_{2}(a q)$
D. $2 \mathrm{SO}_{2}(a q)+\mathrm{O}_{2}(a q) \rightleftharpoons 2 \mathrm{SO}_{3}(a q)$
1.7 Which of these physical changes would require the addition of energy?
A. melting a solid
B. condensing a gas
C. freezing a liquid
D. All of the above
1.8 Which of the following is an endothermic process?
A. work is done by the system on the surroundings
B. heat energy flows from the system to the surroundings
C. work is done on the system by the surroundings
D. heat energy is evolved by the system
1.9 Specific heat capacity is the:
A. capacity of a substance to gain or lose a 1.00 J of energy in the form of heat.
B. quantity of heat needed to change the temperature of 1.00 g of a substance by 4.184 K.
C. quantity of heat needed to change the temperature of 1.00 g of a substance by 1 K
D. temperature change undergone when 1.00 g of a substance absorbs 4.184 J .
1.10 Exactly 253.0 J will raise the temperature of 10.0 g of a metal from $25.0^{\circ} \mathrm{C}$ to $60.0^{\circ} \mathrm{C}$. What is the specific heat capacity of the metal?
A. $12.2 \mathrm{~J} /\left(\mathrm{g} .{ }^{\circ} \mathrm{C}\right)$
B. $1.38 \mathrm{~J} /\left(\mathrm{g} .{ }^{\circ} \mathrm{C}\right)$
C. $0.723 \mathrm{~J} /\left(\mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)$
D. $60.5 \mathrm{~J} /\left(\mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)$
1.11 In ionic bond formation, the lattice energy of ions \qquad as the magnitude of the ion charges \qquad and the radii \qquad .
A. Increases, decrease, increase
B. Increases, increase, increase
C. Decreases, increase, increase
D. Increases, increase, decrease
1.12 There are \qquad valence electrons in the Lewis structure of $\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{3}$.
A. 18
B. 20
C. 26
D. 32
1.13 A valid Lewis structure of \qquad cannot be drawn without violating the octet rule.
A. $\mathrm{PO}_{4}{ }^{3-}$
B. SiF_{4}
C. CF_{4}
D. SeF_{4}
1.14 ClF_{3} has a T-Shaped geometry. How many non-bonding domains does the molecule have?
A. 1
B. 2
C. 3
D. 4
1.15 Which of the pairs of molecules below have the same hybridization on the central atom? (The central atom is underlined in each molecule.)
A. $\mathrm{CO}_{2}, \mathrm{CH}_{4}$
B. $\mathrm{H}_{2} \mathrm{CO}, \mathrm{BeH}_{2}$
C. $\mathrm{BCl}_{3}, \mathrm{H} \underline{\mathrm{NO}}$
D. $\mathrm{NH}_{3}, \mathrm{H} \mathrm{NO}$
1.16 Find the correct stereochemistry for the following four alkenes:

A

B

C

D
A. \mathbf{A} is Z, \mathbf{B} is Z, \mathbf{C} is E, \mathbf{D} is E
B. \mathbf{A} is Z, \mathbf{B} is E, \mathbf{C} is Z, \mathbf{D} is E
C. \mathbf{A} is E, \mathbf{B} is E, \mathbf{C} is Z, \mathbf{D} is Z
D. \mathbf{A} is Z, \mathbf{B} is Z, \mathbf{C} is E, \mathbf{D} is Z
1.17 Using the VSEPR model, the molecular geometry of the central atom in tetrafluoroborate ion is \qquad _.
A. square planar
B. trigonal planar
C. square pyramidal
D. trigonal bipyramidal
1.18 The hybridizations of bromine in BrF_{5} and of arsenic in AsF_{5} are \qquad and
\qquad respectively.
A. $s p^{3}, s p^{3} d$
B. $s p^{3} d, s p^{3} d^{2}$
C. $s p^{3} d^{2}, s p^{3} d$
D. $s p^{3} d^{2}, s p^{3} d^{2}$
1.19 Which is NOT a valid resonance structure for the anion in the box below?

a.

b.

c.

d.

1.20 Which of the following is the constitutional isomer of 4-isopropyloctane?
A. 3-ethyl-2,4,5-trimethyloctane
B. isobutylcyclohexane
C. 4-ethyl-2,2-dimethylheptane
D. 4-ethyl-2,2-dimethyloctane

END OF SECTION A

Please answer ALL of the questions in this section.

QUESTION 2

2.1 A 466 g sample of water is heated from $8.50^{\circ} \mathrm{C}$ to $74.60^{\circ} \mathrm{C}$. Calculate the amount of heat absorbed (in kJ) by water.
2.2 Calculate the standard enthalpy change for the reaction:

$$
\mathrm{Al}(\mathrm{~s})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow \mathrm{Fe}(\mathrm{~s})+\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

Given that:
a) $2 \mathrm{Al}(\mathrm{s})+3 / 2 \mathrm{O}_{2}(\mathrm{~g})-\rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s}) \quad \Delta H_{r \times n}{ }^{0}=-1669.8 \mathrm{~kJ} / \mathrm{mol}$
b) $2 \mathrm{Fe}(\mathrm{s})+3 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \quad \Delta H_{\mathrm{r} \times n^{0}}=-882.2 \mathrm{~kJ} / \mathrm{mol}$

QUESTION 3

3.1 In a NaOH solution $\left[\mathrm{OH}^{-}\right]$is $2.9 \times 10^{-4} \mathrm{M}$. Calculate the pH of the solution.
3.2 Calculate the pH of a :
a) $1.0 \times 10^{-3} \mathrm{M} \mathrm{HCl}$ solution
b) $0.020 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ solution

QUESTION 4

4.1 Convert the following condensed formula to a skeletal structure.

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$.

4.2 What is the IUPAC name of the compound below?

4.3 Enalapril is currently in clinical trials for congestive heart failure, and its structure is given below.

Enalapril
a) What is the correct molecular formula for this interesting antihypertensive agent?
b) Identify the functional groups present in Enalapril.

QUESTION 5

The orbital diagram below shows the valence electrons for a $2+$ ion of an element.

$4 d$
5.1 What is the ion?
5.2 What is the noble gas electronic configuration of the natural element?
5.3 Chloric acid is a weak acid with the formula HClO_{3}. Draw the resonance structures of HClO_{3}, and clearly indicate which of the structure is the most stable showing the lone pairs of electrons.

USEFUL CONSTANTS

Gas constant, $\mathrm{R}=8.3145 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}=0.083145 \mathrm{dm}^{3} \cdot \mathrm{bar} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}=0.08206 \mathrm{Latm} \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}$
$1 \mathrm{~Pa} \cdot \mathrm{~m}^{3}=1 \mathrm{kPa} . \mathrm{L}=1 \mathrm{~N} \cdot \mathrm{~m}=1 \mathrm{~J}$

1 atm $=101325 \mathrm{~Pa}=760 \mathrm{mmHg}=760$ torr

Avogadro's Number, $\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$

Planck's constant, $\mathrm{h}=6.626 \times 10^{-34} \mathrm{Js}$

Speed of light, $\mathrm{c}=2.998 \times 10^{8} \mathrm{~ms}^{-1}$

PERIODIC TABLE OF THE ELEMENTS

1																	18
$\begin{gathered} \mathbf{1} \\ \mathbf{H} \\ 1.00794 \end{gathered}$	2											13	14	15	16	17	$\begin{array}{\|c\|} \hline 2 \\ \mathrm{He} \\ 4.00260 \end{array}$
3	4											5	6	7	8	9	10
Li	Be											B	C	N	0	F	Ne
6.941	9.01218											10.81	12.011	14.0067	15.9994	18.9984	20.179
11	12											13	14	15	16	17	18
Na	Mg											AI	Si	\mathbf{P}	S	Cl	Ar
22.9898	24.305	3	4	5	6	7	8	9	10	11	12	26.9815	28.8855	30.9738	32.06	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.0983	40.08	44.9559	47.88	50.9415	51.996	54.9380	55.847	58.9332	58.69	63.546	65.38	69.72	72.59	74.9216	78.96	79.904	83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	$\mathbf{Z r}$	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.4678	87.62	88.9059	91.22	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.41	114.82	118.69	121.75	127.6	126.9	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	$\mathbf{R n}$
132.905	137.33	174.967	178.49	180,948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.2	208.908	(209)	(210)	(222)
87	88	103	104	105	106	107	108	109	110	111	112		114		116		118
$\underset{(223)}{\text { Fr }}$	${ }_{20}$	${ }_{(260)}^{\text {Lr }}$	Rf	Db	$\underset{(263)}{\text { Sg }}$	$\mathbf{B h}$	Hs	Mt	Uun	Uuu (272)	$\begin{aligned} & \text { Uub } \end{aligned}$		Uuq		Uuh		Uno

Lanthanides:

57	58	59	60	6	62	63	64	65	66	67	68	69	70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	$\mathbf{Y b}$
138.906	140.12	140.908	144.24	(145)	150.36	151.96	157.25	158.925	162.50	161.930	167.26	166.934	173.04

Actinides:

89	90	91	92	93	94	95	96	97	98	99	100	101	
Ac	Th	Pa	U	Np	Pu	n	Cm	k	Cf	Es	Fm	Md	No
227.028	232038		28020	37	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)

