

#### **NAMIBIA UNIVERSITY** OF SCIENCE AND TECHNOLOGY

Faculty of Health, Natural **Resources and Applied** Sciences

School of Natural and Applied Sciences

Department of Biology, **Chemistry and Physics** 

 13 Jackson Kaujeua Street
 T: +264 61 207 2012

 Private Bag 13388
 F: +264 61 207 9012

 Windhoek
 E: dbcp@nust.na

 NAMIBIA
 W; www.nust.na

| QUALIFICATION : BACHELOR OF SCIENCE |                      |
|-------------------------------------|----------------------|
| QUALIFICATION CODE: 07BOSC          | LEVEL: 5             |
| COURSE: GENERAL PHYSICS 1B          | COURSE CODE: GNP502S |
| DATE: JANUARY 2024                  | SESSION: 1           |
| DURATION: 3 HOURS                   | MARKS: 100           |

# SECOND OPPORTUNITY / SUPPLEMENTARY: QUESTION PAPER

**PROF SYLVANUS ONJEFU** EXAMINER:

DR EMMANUEL EJEMBI

**PROF DIPTI SAHU** MODERATOR:

INSTRUCTIONS:

- 1. Answer all questions on the separate answer sheet.
- 2. Please write neatly and legibly.
- 3. Do not use the left-side margin of the exam paper. This must be allowed for the examiner.
- 4. No books, notes and other additional aids are allowed.
- 5. Mark all answers clearly with their respective question numbers.

### PERMISSIBLE MATERIALS

1. Non-Programmable Calculator

#### ATTACHEMENTS

1. None

This paper consists of 6 pages including the front page

| 1.1Which of the following is not a mechanical wave?a. wave propagated in stretched string<br>c. radio wavesb. waves in closed pipe1.2If V is the velocity of a wave, $\lambda$ its wavelength and T its period, the V, $\lambda$ and T<br>Are related by the expression:<br>a. $\lambda = VT$ b. $\lambda = \frac{V}{T^2}$ a. $\lambda = VT$ b. $\lambda = \frac{V}{T^2}$ c. $T^2 = \lambda V$ d. $V = \lambda T$ | ARKS] |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| a. wave propagated in stretched string<br>c. radio waves d. water wave<br>1.2 If V is the velocity of a wave, $\lambda$ its wavelength and T its period, the V, $\lambda$ and T<br>Are related by the expression:<br>a. $\lambda = VT$ b. $\lambda = \frac{V}{T^2}$ c. $T^2 = \lambda V$ d. $V = \lambda T$                                                                                                       | (2)   |
| 1.2 If V is the velocity of a wave, $\lambda$ its wavelength and T its period, the V, $\lambda$ and T<br>Are related by the expression:<br>a. $\lambda = VT$ b. $\lambda = \frac{V}{T^2}$ c. $T^2 = \lambda V$ d. $V = \lambda T$                                                                                                                                                                                 |       |
| a. $\lambda = VT$ b. $\lambda = \frac{V}{T^2}$ c. $T^2 = \lambda V$ d. $V = \lambda T$                                                                                                                                                                                                                                                                                                                            | (2)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| 1.3 If the angle of incidence for light travelling from air to glass is 45° and<br>the angle of refraction in the glass is 28°, determine the refractive index<br>of glass with respect to air.                                                                                                                                                                                                                   | (2)   |
| a. 1.51 b. 0.66 c. 1.62 2.25                                                                                                                                                                                                                                                                                                                                                                                      |       |
| 1.4 What is the speed of compression waves (sound waves) in water? The bulk<br>modulus for water is 2.2 X 10 <sup>9</sup> N/m <sup>2</sup> .                                                                                                                                                                                                                                                                      | (2)   |
| a. 1.6 km/s b. 1.5 km/s c. 1.7 km/s d. 1.8 km/s                                                                                                                                                                                                                                                                                                                                                                   |       |
| 1.5 All are example of electromagnetic wave except                                                                                                                                                                                                                                                                                                                                                                | (2)   |
| a. visible light b. microwave c. X-rays d. beta                                                                                                                                                                                                                                                                                                                                                                   |       |
| 1.6 A normal human ear can respond to frequency range.                                                                                                                                                                                                                                                                                                                                                            | (2)   |
| a. 20 Hz to 20,000 Hz b. 20,000 Hz to 20, 000000 Hz c. below 20 Hz d. above 20,000 Hz                                                                                                                                                                                                                                                                                                                             |       |
| 1.7 What is the refractive index of a substance if the real depth is 6 m and its apparent depth is 4.5 m?                                                                                                                                                                                                                                                                                                         | (2)   |
| a. 10.5 b. 1.33 c. 1.50 d. 0.75                                                                                                                                                                                                                                                                                                                                                                                   |       |

| 1.8   | What is the speed of the wave in Question 1.5, if its wavelength is 20 cm?                                                                                | (2) |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|       | a. 200 m/s b. 2 cm/s c. 2 m/s d. 20 m/s                                                                                                                   |     |
| 1.9   | An object with a height of 1.00 cm is placed 10.0 cm from a concave mirror whose radius of curvature is 30.0 cm. Determine the position of the image.     | (2) |
|       | a. 30 cm b. – 30 cm c. 20 cm d 20 cm                                                                                                                      |     |
| 1.10  | In the dispersion of white light into its component colors,<br>is the least bent.                                                                         | (2) |
|       | a. Violet b. blue c. green d. red                                                                                                                         |     |
| 1.11  | The mirage is a phenomenon of                                                                                                                             | (2) |
|       | <ul> <li>a. Interference</li> <li>b. total internal reflection</li> <li>c. dispersion</li> <li>d. diffraction</li> </ul>                                  |     |
| 1.12  | has the shortest wavelength when a triangular prism spreads white light out into its component colors.                                                    | (2) |
|       | a. Yellow b. indigo c. orange d. violet                                                                                                                   |     |
| 1.13  | Wave tend to spread out or bend in when they pass an edge or through a gap. This bending effect is called what?                                           | (2) |
|       | a. dispersion b. diffraction c. superposition d. interference                                                                                             |     |
| 1.14  | The focusing of different colours of light at different distances behind a lens is known as what?                                                         | (2) |
|       | a. myopia b. hyperopia c. astigmatism d. chromatic aberration                                                                                             |     |
| 1.15  | In an instance where a wave travel along the same flat plane in which the vibrating particle that carries the wave oscillate, such waves are called what? | (2) |
|       | a. gamma waves b. longitudinal waves c. transverse waves d. x- rays                                                                                       |     |
| Gener | al Physics 1B (GNP502S) 2 <sup>nd</sup> Opportunity January 2024                                                                                          | 3   |

| 1.16                 | The whistle of a train emits a tone of frequency 440 Hz as the train approaches a stationary observer at 30 m/s. What frequency does the observer hear? [Speed of wave is 331 m/s].                              | (2) |  |  |  |  |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|
|                      | a. 380 Hz b. 483 Hz c. 485 Hz d. 484 Hz                                                                                                                                                                          |     |  |  |  |  |
| 1.17                 | is the characteristic of a note which enables us to differentiate a high note from a low note.                                                                                                                   | (2) |  |  |  |  |
|                      | a. Intensity b. node c. pitch d. loudness                                                                                                                                                                        |     |  |  |  |  |
| 1.18                 | One cycle of a wave takes 0.1 s to pass a stationary observer. What is the frequency of the wave?                                                                                                                | (2) |  |  |  |  |
|                      | a. 0.1 Hz b. 0.2 Hz c. 10 Hz d. 20 Hz                                                                                                                                                                            |     |  |  |  |  |
| 1.19                 | What is the critical angle for light travelling from water to air? [Take $_an_w = \frac{4}{3}$ ].                                                                                                                | (2) |  |  |  |  |
|                      | a. 0.75°1′ b. 48°′36′ c. 28°40′ d. 25°17′                                                                                                                                                                        |     |  |  |  |  |
| 1.20                 | A long rope is fixed at one end, and the free end is made to oscillate in one plane at right angles to the rope with frequency of 4 Hz. The successive crests are 0.6 m apart. Determine the speed of the waves. | (2) |  |  |  |  |
|                      | a. 6.7 m/s b. 0.15 m/s c. 2.4 m/s d. 4.6 m/s                                                                                                                                                                     |     |  |  |  |  |
|                      |                                                                                                                                                                                                                  |     |  |  |  |  |
| SECTION B [60 MARKS] |                                                                                                                                                                                                                  |     |  |  |  |  |
| QUE                  | QUESTION 2 [16 MARKS]                                                                                                                                                                                            |     |  |  |  |  |
| 2.1                  | A concave mirror of radius of curvature 20 cm produces an inverted image<br>3 times the size of an object placed perpendicular to the axis. Calculate<br>the positions of the object and the image.              | (8) |  |  |  |  |
| 2.2                  | State the two condition that must be fulfilled for total internal reflection to occur.                                                                                                                           | (4) |  |  |  |  |
| 2.3                  | A thin glass lens (n = 1.5) has a focal length of $+$ 10 cm in air. Compute its focal length in water (n = 1.33).                                                                                                | (4) |  |  |  |  |
| Gene                 | eral Physics 1B (GNP502S) 2 <sup>nd</sup> Opportunity January 2024                                                                                                                                               | 4   |  |  |  |  |

с<mark>і</mark>. ж<sup>і</sup>

| QUESTION 3 [15 MARKS] |                                                                                                                                                                                                                                                                                           | 15 MARKS]   |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 3.1                   | Differentiate between chromatic aberration and spherical aberration and give one example for each of their correction.                                                                                                                                                                    | (6)         |
| 3.2                   | What is the critical angle for light traveling from water to air? [Take refract index if water = $\frac{4}{3}$ ].                                                                                                                                                                         | ive<br>(4)  |
| 3.3                   | Light of wavelength 750 nm passes through a slit 1.0 X 10 $^{-3}$ mm wide. How wide is the central maximum on a screen 20 cm away?                                                                                                                                                        | (5)         |
| QUESTION 4 [14 MARKS] |                                                                                                                                                                                                                                                                                           |             |
| 4.1                   | State doppler effect in sound.                                                                                                                                                                                                                                                            | (2)         |
| 4.2                   | An automobile moving at 30.0 m/s is approaching a factory whistle that has a frequency of 500 Hz.                                                                                                                                                                                         |             |
| 4.2.:                 | 1 If the speed of sound in air is 340 m/s, what is the apparent frequency of t<br>whistle as heard by the driver?                                                                                                                                                                         | :he<br>(3)  |
| 4.2.2                 | 2 Repeat for the case of a car leaving the factory at the same speed.                                                                                                                                                                                                                     | (3)         |
| 4.3                   | When two tuning forks are sounded simultaneously, they produce one bea every 0.30 seconds.                                                                                                                                                                                                | t           |
| 4.3.:                 | <ol> <li>By how much their frequency differ if the number of beats per second<br/>equal the frequency difference.</li> </ol>                                                                                                                                                              | (3)         |
| 4.3.:                 | 2 A tiny piece of chewing gum is placed on a prong of one fork. Now there is<br>one beat every 0.40 seconds. Was this turning fork lower- or the higher<br>frequency fork?                                                                                                                | (3)         |
| QUESTION 5 [15 MARKS] |                                                                                                                                                                                                                                                                                           |             |
| 5.1                   | When a fish looks up at the surface of a perfectly smooth lake, the surface Appears dark except inside a circular area directly above it. Calculate the angle $\emptyset$ that this illuminated region subtends. (The index of refraction of was $n_2 = 1.333$ and of air is $n_1 = 1$ ). | ater<br>(4) |

(e)) (e))

2<sup>nd</sup> Opportunity January 2024

5



- 5.2 The length of air column at which the first resonance was observed, when
  a vibrating fork was placed on a resonance tube, was 30 cm. Determine
  the wavelength of the air column and the frequency of the fork.
  [Take speed of sound as 330 m/s]
- 5.3 Compute the speed of sound in neon gas at 27°C. For neon, M = 20.18kg/kmol.
  [Take the ratio of the specific heat γ, for monoatomic gas as 1.67, R = gas constant = 8314 J/Kmol.K].
- 5.4 Find the speed of sound in a diatomic ideal gas that has a density of 3.50 kg/m<sup>3</sup> and a pressure of 215 kPa. [Using the equations of gas law PV = (m/M) RT; ratio of specific heat capacity,  $\Upsilon$ , = 1.40 for a diatomic ideal gas]. (4)

## END OF QUESTION PAPER

General Physics 1B (GNP502S)