

Faculty of Health, Natural Resources and Applied Sciences

School of Natural and Applied Sciences

Department of Biology, Chemistry and Physics

13 Jackson Kaujeua Street T: +264 61 207 2012 Private Bag 13388 Windhoek NAMIBIA

F: +264 61 207 9012 E: dbcp@nust.na W: www.nust.na

QUALIFICATION: VARIOUS	
QUALIFICATION CODE: VARIOUS	LEVEL: 6
COURSE: PHYSICAL CHEMISTRY	COURSE CODE: PCH602S
DATE: JANUARY 2025	SESSION: 1
DURATION: 3 HOURS	MARKS: 100

SECOND OPPORTUNITY / SUPPLEMENTARY: EXAMINATION QUESTION PAPER

EXAMINER:

Prof Habauka Kwaambwa

MODERATOR:

Dr Euodia Hess

INSTRUCTIONS

- 1. Answer ALL the questions in Sections A and B.
- 2. Answer all questions on the separate answer sheet.
- 3. Please write neatly and legibly.
- 4. Do not use the left side margin of the exam paper. This must be allowed for the examiner.
- 5. No books, notes and other additional aids are allowed.
- 6. Mark all answers clearly with their respective question numbers.

PERMISSIBLE MATERIALS

Non-Programmable Calculator

ATTACHMENTS

List of Useful Constants and Equation

THIS QUESTION PAPER CONSISTS OF 7 PAGES (Including this front page and a list of useful constants and equation as an attachment)

There are 10 questions in this section. Choose the correct answer. Each question carries 2 marks.

- 1. An ideal gas at 27°C is heated at constant pressure until its volume is double. The final temperature is:
 - A. 54°C
 - B. 327°C
 - C. 108°C
 - D. 654°C
 - E. 600°C
- 2. Which of the following is not an intensive property?
 - A. Pressure
 - B. Temperature
 - C. Density
 - D. Heat
 - E. Molar volume
- 3. A system does 430 J of work in its surroundings while absorbing 270 J of heat. Calculate the change in the internal energy of the system.
 - A. 700 J
 - B. 160 J
 - C. -160 J
 - D. 1600 J
 - E. Insufficient Information
- 4. All of the following have a standard heat of formation value of zero at 25°C and 1.0 atm except:
 - A. N₂(g)
 - B. Fe(s)
 - C. Ne(g)
 - D. H(g)
 - E. Hg(/)

5. Calculate the standard heat of formation, ΔH_f^o , for FeS₂(g), given the following information:

$$2FeS_2(s) + 5O_2(g) \rightarrow 2FeO(s) + 4SO_2(g)$$

$$\Delta H_{rxn}^{o} = -1370 \text{ kJ}$$

$$\Delta H_f^o$$
 for $SO_2(g) = -297 \text{ kJ/mol}$

$$\Delta H_f^o$$
 for FeO(s) = - 268 kJ/mol

- A. 177 kJ
- B. 1550 kJ
- C. -774 kJ
- D. 686 kJ
- E. +808 kJ

6. If
$$\Delta G^{\circ} < 0$$
, then K is _____. If $\Delta G^{\circ} > 0$, then K is _____. If $\Delta G^{\circ} = 0$, then K is _____.

- A. > 1, < 1, = 1
- B. <1, >1, =1
- C. < 0, > 0, = 0
- D. > 0, < 0, = 0
- E. <1, >1, =0
- 7. The $\Delta H_{\text{sublimation}}$ of I₂ is 60.46 kJ/mol, while its $\Delta H_{\text{vaporization}}$ is 41.71 kJ/mol. What is the ΔH_{fusion} of I₂?
 - A. 102.17 kJ/mol
 - B. 102.17 kJ/mol
 - C. 18.75 kJ/mol
 - D. 18.75 kJ/mol
 - E. Insufficient information
- 8. When a conductance cell was filled with 0.0025 M solution of K_2SO_4 , its resistance was 326 Ω . If the cell constant is 0.2281 cm⁻¹, the conductivity (in $\Omega^{-1}cm^{-1}$) of K_2SO_4 solution is
 - A. 4.997 x 10⁻⁴
 - B. 5.997 x 10⁻⁴
 - C. 7.997 x 10⁻⁴
 - D. 3.997 x 10⁻⁴
 - E. 6.997 x 10⁻⁴
- 9. Which of the following expressions is correct?

A.
$$\Lambda_o \left(Al_2 \left(SO_4 \right)_3 \right) = 3 \lambda_o^+ \left(Al^{3+} \right) + 2 \lambda_o^- \left(SO_4^{2-} \right)$$

B.
$$\Lambda_o \left(A l_2 \left(SO_4 \right)_3 \right) = \lambda_o^+ \left(A l^{3+} \right) + \lambda_o^- \left(SO_4^{2-} \right)$$

C.
$$\Lambda_{o}(NH_{4}OH) = \Lambda_{o}(NH_{4}Cl) - \Lambda_{o}(NaCl) + \Lambda_{o}(NaOH)$$

D.
$$\Lambda_{o}(FeSO_{4}) = 2\lambda_{o}^{+}(Fe^{2+}) + 2\lambda_{o}^{-}(SO_{4}^{2-})$$

$$E. \quad \Lambda_{o}\left(NH_{4}OH\right) = \Lambda_{o}\left(NH_{4}Cl\right) - \Lambda_{o}\left(NaOH\right) - \Lambda_{o}\left(NaCl\right)$$

- A. 22 kJ
- B. 22 kJ
- C. 52 kJ
- D. 52 kJ
- E. 126 kJ

SECTION B [80]

There are FIVE questions in this section. Answer all Questions.

QUESTION 1 [14]

(a) State whether each of the following statements is **true** or **false**. If false either correct it or state briefly the reason for its being false.

(i)
$$w = \oint dw = 0$$
 and $\Delta H = \oint dH = 0$ (2)

- (ii) The compressibility factor, Z > 1 for many gases at high pressures is attributed to finite size of gas molecules and repulsive forces.(2)
- (iii) For a perfect crystalline substance, $S_{0^{\circ}C} = 0$. (2)

(iv)
$$\left(\frac{\partial G}{\partial P}\right)_{T} = V$$
 and $\left(\frac{\partial \Delta G}{\partial T}\right)_{P} = -\Delta S$ (2)

- (v) According to Trouton's law, the entropy of vaporisation at normal boiling point of benzene (C_6H_6) and water is approximately equal to 88 JK⁻¹mol⁻¹. (2)
- (b) Starting with $PV^{\gamma} = \text{Constant}$, show that $TV^{\gamma-1} = \text{Constant}$, where P, V and T is pressure, volume and absolute temperature, respectively, and g is the relationship between C_{ν} and C_{p} . (4)

QUESTION 2 [13]

- (a) State whether q, w, ΔU , ΔH and ΔS are positive, negative or zero in adiabatic compression of an ideal gas. (5)
- (b) A sample consisting of 2.00 mol argon (assume to behave as ideal gas) is expanded reversibly and isothermally at 0° C from 22.4 dm³ to 44.8 dm³. For this process, calculate q, w Δ U and Δ H. (8)

QUESTION 3 [13]

(a) Estimate the enthalpy change of formation for NH₃(g) at 100°C given: $\frac{1}{2} N_2(g) + \frac{3}{2} H_2(g) \rightleftharpoons NH_3(g), \ \Delta H_f^o(25°C) = -46.11 \ \text{kJmol}^{-1}$ $C_p(N_2, g) = 29.12 \ \text{JK}^{-1} \text{mol}^{-1}$ $C_p(H_2, g) = 28.82 \ \text{JK}^{-1} \text{mol}^{-1}$ $C_p(NH_3, g) = 35.06 \ \text{JK}^{-1} \text{mol}^{-1}$

- (b) Calculate ΔG° for 1 mole of N₂O₄ decomposition at 298 K, given K_p = 0.163. If ΔS° for the reaction is 184.2 JK⁻¹mol⁻¹ at 298 K, calculate ΔH° at 298 K. (3)
- (c) The equilibrium constant of the reaction $COCl_2(g) \rightleftharpoons CO)g) + Cl_2(g)$

was determined as a function of temperature and the data was fitted using the linear form of the van't Hoff isochore and the result was:

$$\ln K_p = \frac{14080}{T} + 17.85$$

Use these results to obtain ΔH^{o} , ΔS^{o} and ΔG^{o} .

(4)

(d) Is the reaction in (c) above endothermic or exothermic? Give a reason for you answer. Which linear plot A or B in the diagram below best represents this reaction? (3)

QUESTION 4 [20]

(a) Explain briefly why **conductivity**, κ , is not the most convenient quantity to use for the study of electrolytic conduction. (2)

- (b) The molar conductivities at infinite dilution (in Ω^{-1} cm²mol⁻¹) of NaCl, HCOONa and HCl are 126.4, 104.6 and 426.1, respectively, at 25°C. The molar conductivity of the carboxylic acid, HCOOH, at a concentration of 0.100 M is 50.5 Ω^{-1} cm²mol⁻¹. Calculate the following:
 - (i) molar conductivity at infinite dilution, Λ_0 , of HCOOH. (2)
 - (ii) dissociation constant K_a and the pH of the acid solution. (6)
- (c) State the two functions of a salt bridge in an electrochemical cell. (2)
- (d) Given the following electrochemical cell notation

$$Pt|Ti^{3+}(0.1m),Ti^{4+}(0.1m)||Cu^{+}(0.1m)||Cu(s)$$

- (i) Deduce the overall chemical reaction of the electrochemical cell. (2)
- (ii) If the emf of the cell, E_{cell} , is 0.442 V at 25°C, calculate ΔG , ΔH and ΔS for the reaction if the temperature coefficient of the emf is $-1.25 \times 10^{-4} \text{ VK}^{-1}$ at this temperature. (6)

QUESTION 5 [20]

(a) What is the overall order of the reaction described by each of the rate expressions below? State the units of the rate coefficient of the rate is in moldm⁻³s⁻¹.

(i) Rate =
$$k \frac{[A]^{1.5}}{[B]^{1.5}}$$
 (ii) Rate = $k[A][B]^{0.5}[C]^{1.5}$ (4)

(b) The reaction $H_2 + I_2 \rightarrow 2HI$ is first order with respect to $[H_2]$ and $[I_2]$. When $[H_2] = 1$ molL⁻¹ and $[I_2] = 2$ molL⁻¹, the following kinetic are observed.

$$\frac{d\big[HI\big]}{dt} = 1.78 \times 10^{\text{-4}} \, \text{molL}^{\text{-1}} \text{s}^{\text{-1}} \, \text{at 556 K and} \, \, \frac{d\big[HI\big]}{dt} = 0.2572 \, \, \text{molL}^{\text{-1}} \text{s}^{\text{-1}} \, \text{at 700 K}.$$

- Calculate the rate constant at each of the temperatures and evaluate the activation energy [Assume that the pre-exponential factor is constant] (6)
- (c) The reverse reaction, i.e. $2HI \rightarrow H_2 + I_2$, has an activation energy of 183 kJmol⁻¹. Does this make the reaction $H_2 + I_2 \rightarrow 2HI$ exothermic or endothermic? Explain your answer with a diagram of the energy profile of the reaction. (6)
- (d) Hydrogen peroxide, H_2O_2 , decomposes in water by a first order kinetics process. A 0.156 moldm⁻³ solution of H_2O_2 in water has an initial rate of 1.14 x 10⁻⁵ moldm³s⁻¹. Calculate the rate constant, k, for the decomposition reaction and the half-life of the decomposition. (4)

END OF EXAM QUESTION PAPER

LIST OF USEFUL CONSTANTS AND EQUATION

Van der Waals eqⁿ.
$$P = \frac{nRT}{V - nb} - \frac{n^2 a}{V^2} = \frac{RT}{\overline{V} - b} - \frac{a}{\overline{V}^2}$$

Universal Gas constant R = 8.314 J K⁻¹ mol⁻¹

Boltzmann's constant, $k = 1.381 \times 10^{-23} \text{ J K}^{-1}$

Planck's constant h = $6.626 \times 10^{-34} \text{ J s}$

Debye-Hückel's constant, A = $0.509 \text{ (mol dm}^{-3})^{1/2} \text{ or mol}^{-0.5} \text{kg}^{0.5}$

Faraday's constant $F = 96485 \text{ C mol}^{-1}$

Mass of electron $m_e = 9.109 \times 10^{-31} \text{ kg}$

Velocity of light $c = 2.998 \times 10^8 \,\mathrm{m \, s^{-1}}$

Avogadro's constant $N_A = 6.022 \times 10^{23}$

1 electron volt (eV) = $1.602 \times 10^{-19} \text{ J}$

1 atm = 101325 Pa = 760 mmHg = 760 torr; $1 \text{ bar} = 10^5 \text{ Pa}$