

NAMIBIA UNIVERSITY OF SCIENCE AND TECHNOLOGY

Faculty of Health, Natural **Resources and Applied** Sciences

School of Natural and Applied Sciences

Department of Mathematics, Statistics and Artuarial Science 13 Jackson Kaujeua Street T: +264 61 207 2913 Private Bag 13388 E: msas@nust.na Windhoek NAMIBIA

W: www.nust.na

QUALIFICATION: BACHELOR OF SCIENCE IN APPLIED MATHEMATICS AND STATISTICS				
QUALIFICATION CODE:	07BSAM	LEVEL:	5	
COURSE:	CALCULUS 1	COURSE CODE:	CLS502S	
DATE:	NOVEMBER 2023	SESSION:	1	
DURATION:	3 HOURS	MARKS:	100	

FIRST OPPORTUNITY EXAMINATION: QUESTION PAPER

EXAMINER:	
MODERATOR:	

Dr. David liyambo and Mrs. Yvonne Nkalle Dr. Nega Chere

INSTRUCTIONS (add other relevant instructions):

- 1. Attempt all the questions in the booklet provided.
- 2. Please write neatly and legibly using a black or blue inked pen, and sketches must be done in pencil.
- 3. Do not use the left side margin of the answer script. This must be allowed for the examiner.
- 4. No books, notes or other additional aids are allowed.
- 5. Mark all answers clearly with their respective question numbers.
- 6. Show clearly all the steps used in the calculations.

PERMISSIBLE MATERIALS:

1. Non-programmable calculator without a cover.

ATTACHMENTS:

None

This paper consists of 3 pages including this front page

Question 1.

Consider the functions $f(x)=4x^2+9, \; g(x)=\sqrt{1-x^2}$ and $h(x)=4x^2-3; \; x\geq 0$.	
1.1 Find the sum of the smallest and the largest numbers in the domain of $\frac{g}{f}$.	[5]
1.2 Determine whether g is even, odd or neither.	[3]
1.3 Determine whether h^{-1} exists. If it does, find it.	[9]

Question 2.

2.1 Find the following limits, if they exist.

a)
$$\lim_{x \to -3} \frac{4x + 12}{x^3 + 3x^2 - 4x - 12}.$$
 [4]

b)
$$\lim_{x \to 0^+} (e^x + x)^{\frac{1}{x}}$$
 [7]

2.2 Use the $\varepsilon - \delta$ method to show that $\lim_{x \to 2} (10x - 6) = 14.$ [7]

Question 3.

Let f(x) = |2x - 10| + 2 .

- **3.1** Show that f is continuous at x = 5. [7]
- **3.2** Show that f is not differentiable at x = 5. [8]

Question 4.

4.1 Use the definition (first principle) to find the derivative of $f(x) = \frac{1}{\pi^2} - \frac{x-1}{x+\sqrt{2}}$.	[7]
---	-----

4.2 Differentiate each of the following functions

a)
$$f(x) = (\ln 3)^{\sec x} + \tan^{-1}(\ln 4x).$$
 [5]

b)
$$g(x) = (2x^3 + 5)^{\sqrt{x^2 + 7}}$$
 [7]

Question 5.

5.1 If the equation $x^2y + \sin y = 2\pi$ determines a differentiable function f such that y = f(x), find the slope of the tangent line to the graph of this equation at the point $P(1, 2\pi)$. [6]

5.2 Without finding the inverse function f^{-1} , find $(f^{-1})'(b)$, where $f(x) = e^{2x-5}$ and b = f(-10).

[7]

Question 6.

Let
$$f(x) = \frac{x^4}{4} - 2x^2 + 4$$
 and $g(x) = 2x^4 - 8x^3 + 316x - 172$.

6.1 Find the intervals on which f is increasing and on which it is decreasing.

6.2 Find the intervals on which the graph of y = g(x) is concave upwards and on which it is concave downwards. [9]

[9]