ПAMIBIA UTIVERSITY

Faculty of Health, Natural
Resources and Applied
Sciences
School of Natural and Applied
Sciences
Department of Mathematics, Statistics and Actuarial Science

| QUALIFICATION: BACHELOR OF AGRICULTURAL MANAGEMENT |  |
| :--- | :--- |
| QUALIFICATION CODE: O7BAGR | LEVEL: 5 |
| COURSE: AGRICULTURAL STATISTICS | COURSE CODE: AGS520S |
| DATE: NOVEMBER 2023 | SESSION: $\mathbf{1}$ |
| DURATION: $\mathbf{3}$ HOURS | MARKS: 100 |

FIRST OPPORTUNITY: EXAMINATION QUESTION PAPER

## EXAMINER:

MODERATOR:

## Mr. Jonas Amunyela

Mr. Andrew Roux

## INSTRUCTIONS:

1. Answer all questions on the separate answer sheet.
2. Please write neatly and legibly.
3. Do not use the left side margin of the exam paper. This must be allowed for the examiner.
4. No books, notes and other additional aids are allowed.
5. Mark all answers clearly with their respective question numbers.

## PERMISSIBLE MATERIALS:

1. Non-Programmable Calculator

## ATTACHEMENTS

1. Z Table
2. T-distribution table
3. Chi-square table
4. Formula sheet

This paper consists of 6 pages including this front page

## SECTION A

(Write down the letter corresponding to your choice next to the question number)

## Question 1

[22 Marks]
1.1. When re-ordering, a farm owner is interested in ordering different animal feed. Looking at the consumption data, which measure of central tendency is useful to him?
a) Mean
b) Median
c) Mode
d) All the above
1.2. A sample of a population is
a) An experiment in the population
b) A subset of the population
c) A variable in the population
d) An outcome of the population
1.3. Which of the following is a measure of dispersion in a statistical distribution?
a) Mean
b) Median
c) Mode
d) Standard deviation
1.4. Fill in the blank to make the following sentence true. "The frequency of a particular outcome is the number of times it occurs within a specific $\qquad$ of a population."
a) Frequency
b) Variance
c) Sample
d) Distribution

### 1.5 Which of the following is NOT a possible probability?

a) $25 / 100$
b) 1
c) -1
d) 0
1.6 Mathematical probabilities can have values
a) Between -1 and 1 inclusive
b) Corresponding to any positive real number
c) Between 0 and 1 inclusive
d) Quotients of positive whole numbers or zero
1.7 A pig is chosen at random from a pig house of 16 males and 14 females. What is the probability that the pig chosen is not a male?
a) $8 / 15$
b) $7 / 15$
c) 0.35
d) 0
1.8 An $\qquad$ is a process that generate well defined outcomes.
a) Simple random sampling
b) Experiment
c) Joint probability
d) Subjective probability
1.9 $\qquad$ is the likelihood of an outcome of event
a) Sampling
b) Experiment
c) Cluster sampling
d) Probability
1.10 Events $A$ and $B$ are said to be mutually exclusive if
a) $\quad A$ intersection $B$ is not an empty set
b) A union $B$ is empty set
c) $\quad A$ intersection $B$ is empty set
d) None
1.11 Which of the following represents the numeric characteristics of the population. [2]
a) A statistics
b) A parameter
c) A variance
d) A distribution

## SECTION B (Show all your working)

Question 2
2.1 Consider the following daily maximum temperature data for 10 winter days recorded
in Oshana region.
$24,30,20,36,52,30,32,13,22,38$,
Calculate the following:

### 2.1.1 The mean.

2.1.2 The median.
2.1.3 The standard deviation.
2.2 As part of the disease control system the veterinary department has recorded the number of cases per farm related to food and mouth disease in Khomas region during year 2022.The table below present the data.

| 10 | 31 | 21 | 60 | 12 | 30 | 42 | 45 | 50 | 36 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 43 | 52 | 64 | 40 | 44 | 40 | 55 | 48 | 46 | 58 |
| 51 | 61 | 47 | 53 | 41 | 31 | 47 | 48 | 33 | 53 |
| 62 | 49 | 35 | 48 | 26 | 36 | 24 | 62 | 32 | 20 |

2.2.1 Using classes $10-<20,20-<30,30-<40$, and so on, construct a frequency distribution table for the data.
2.3 Let X be the random variable with the following probability distribution.

| $X$ | 2 | 3 | 4 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $P(X)$ | 0.05 | 0.3 | 0.25 | 0.25 | 0.15 |

2.3.1 Estimate the mean for a random variable $X$
2.3.2 Estimate the variance and the standard deviation for a random variable X

### 2.3.3 Find $P(X<4)$

> 2.4 Suppose it is known that $5 \%$ of adults who take a certain medication experience a negative side effect. If a random sample of 100 adult patients was taken, use a binomial probability distribution to find the probability that:
2.4.1 More than two adult patients will experience the negative side effects
2.4.2 Exactly three adult patients will experience the negative side effects
2.4.3 At least two adults will experience the negative side effects
2.5. How many adults are expected to have the side effects

## Question 3 <br> [25 Marks]

3.1 The Auditing procedures require you to have $99 \%$ confidence in estimating the population proportion of sales invoices with errors to within $\pm 0.09$ of the true population proportion. The results from the past month indicated that the largest proportion has been not more than 0.12 . Find the sample size
3.2 If $X$ is normally distributed with the mean $\mu=20$ and standard deviation $\sigma=4$, determine the following probability:
a) $\quad P(X \leq 10)$
b) $\quad P(X \geq 10)$
c) $\quad P(16 \leq X \leq 24$
3.3 Maize yields generally follow a normal distribution. The yearly yield of a particular maize is believed to be normally distributed with a standard deviation $\sigma=$ 45 kg when grown in sandy-loam soil. Several farmers in the same area start applying fertilizers on their small plots. The yearly yield of a random sample of 35 of these plots shows a mean yield $\bar{x}=220$ kg per year.
3.3.3 Construct and interpret a $90 \%$ confidence interval for estimating the actual yearly maize yields from these plots.
3.4 The following data are of milk fat yield (kg) per month from 9 Holstein cows:
$27,17,31,20,29,22,40,28,26$
3.4.1 Use the data to construct a $99 \%$ confidence interval for the average milk fat yield of all Holstein cows

Question 4
[16 Marks]
4.1 In a certain cattle-raising region of the country, it had become a practice among some farmers to feed their Brahman cows a protein supplement which, when fed to other dairy breeds, had never been known to do anything except increase milk yields. The monthly milk yields of a random sample of 41 protein-supplemented cows were recorded. The mean value $\bar{x}$ was 205 litres and the population standard deviation was believed to be 40 litres.
4.1.1 Test at $5 \%$ significance level to determine if protein supplement has increased the average milk yield of Brahman cows to more than 200 litres?
4.2 The eggs of the Cuckoo family have a length which is approximately normally distributed with mean less than 20 mm . The Cuckoo is a nest parasite, especially on nests of the Warbler family, the Sylviidae. Ten Cuckoo eggs were taken at random from nests of the Marsh Warbler. The length of these eggs (units mm ) were,

| 19 | 20 | 20 | 20 | 20 |
| :--- | :--- | :--- | :--- | :--- |
| 20 | 21 | 21 | 21 | 21 |

4.2.1 Is there any evidence to suggest that the average length of the Cuckoo eggs in Marsh Warbler nests is less than 20 mm ? Use $\alpha=2 \%$

## Z - Table

The table shows cumulative probabilities for the standard normal curve.
Cumulative probabilities for NEGATIVE $z$-values are shown first. SCROLL DOWN to the $2^{\text {nd }}$ page for POSITIVE $z$

| z | . 00 | . 01 | . 02 | . 03 | . 04 | . 05 | . 06 | . 07 | . 08 | . 09 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -3.4 | . 0003 | . 0003 | 0003 | . 0003 | . 0003 | . 0003 | . 0003 | . 0003 | . 0003 | . 0002 |
| -3.3 | . 0005 | . 0005 | . 0005 | . 0004 | . 0004 | . 0004 | . 0004 | . 0004 | . 0004 | . 0003 |
| -3.2 | . 0007 | . 0007 | . 0006 | . 0006 | . 0006 | . 0006 | . 0006 | . 0005 | . 0005 | . 0005 |
| 3.1 | . 0010 | . 0009 | . 0009 | . 0009 | . 0008 | . 0008 | . 0008 | . 0008 | . 0007 | . 0007 |
| 3.0 | . 0013 | . 0013 | . 0013 | . 0012 | . 0012 | . 0011 | . 0011 | . 0011 | . 0010 | . 0010 |
| 2.9 | . 0019 | . 0018 | . 0018 | . 0017 | . 0016 | . 0016 | . 0015 | . 0015 | . 0014 | . 0014 |
| -2.8 | . 0026 | . 0025 | . 0024 | . 0023 | . 0023 | . 0022 | . 0021 | . 0021 | . 0020 | . 0019 |
| -2.7 | . 0035 | . 0034 | . 0033 | . 0032 | . 0031 | . 0030 | . 0029 | . 0028 | . 0027 | . 0026 |
| -2.6 | . 0047 | . 0045 | . 0044 | . 0043 | . 0041 | . 0040 | . 0039 | . 0038 | . 0037 | . 0036 |
| -2.5 | . 0062 | . 0060 | . 0059 | . 0057 | . 0055 | . 0054 | . 0052 | . 0051 | . 0049 | . 0048 |
| -2.4 | . 0082 | . 0080 | . 0078 | . 0075 | . 0073 | . 0071 | . 0069 | . 0068 | . 0066 | . 0064 |
| -2.3 | . 0107 | . 0104 | . 0102 | 0099 | . 0096 | . 0094 | . 0091 | . 0089 | . 0087 | . 0084 |
| -2.2 | . 0139 | . 0136 | . 0132 | . 0129 | . 0125 | . 0122 | . 0119 | . 0116 | . 0113 | . 0110 |
| -2.1 | . 0179 | 0174 | . 0170 | . 0166 | . 0162 | . 0158 | . 0154 | . 0150 | . 0146 | . 0143 |
| 2.0 | . 0228 | . 0222 | . 0217 | . 0212 | . 0207 | . 0202 | . 0197 | . 0192 | . 0188 | . 0183 |
| -1.9 | . 0287 | . 0281 | . 0274 | . 0268 | . 0262 | . 0256 | . 0250 | . 0244 | . 0239 | . 0233 |
| -1.8 | . 0359 | . 0351 | . 0344 | . 0336 | . 0329 | . 0322 | . 0314 | . 0307 | . 0301 | . 0294 |
| -1.7 | . 0446 | . 0436 | 0427 | . 0418 | . 0409 | . 0401 | . 0392 | . 0384 | . 0375 | . 0367 |
| -1.6 | . 0548 | . 0537 | . 0526 | . 0516 | . 0505 | . 0495 | . 0485 | . 0475 | . 0465 | . 0455 |
| -1.5 | . 0668 | . 0655 | . 0643 | . 0630 | . 0618 | . 0606 | . 0594 | . 0582 | . 0571 | . 0559 |
| -1.4 | . 0808 | . 0793 | . 0778 | . 0764 | . 0749 | . 0735 | . 0721 | . 0708 | . 0694 | . 0681 |
| -1.3 | . 0968 | . 0951 | . 0934 | . 0918 | . 0901 | . 0885 | . 0869 | . 0853 | . 0838 | . 0823 |
| -1.2 | . 1151 | . 1131 | . 1112 | . 1093 | . 1075 | . 1056 | . 1038 | . 1020 | . 1003 | . 0985 |
| -1.1 | . 1357 | . 1335 | . 1314 | . 1292 | . 1271 | . 1251 | . 1230 | . 1210 | . 1190 | . 1170 |
| -1.0 | . 1587 | . 1562 | . 1539 | . 1515 | . 1492 | . 1469 | . 1446 | . 1423 | . 1401 | . 1379 |
| -0.9 | . 1841 | . 1814 | . 1788 | . 1762 | . 1736 | . 1711 | . 1685 | . 1660 | . 1635 | . 1611 |
| -0.8 | . 2119 | 2090 | 2061 | 2033 | . 2005 | . 1977 | . 1949 | . 1922 | . 1894 | . 1867 |
| -0.7 | . 2420 | 2389 | 2358 | 2327 | . 2296 | . 2266 | 2236 | . 2206 | . 2177 | . 2148 |
| -0.6 | . 2743 | . 2709 | 2676 | 2643 | 2611 | 2578 | . 2546 | . 2514 | . 2483 | 2451 |
| -0.5 | . 3085 | . 3050 | . 3015 | . 2981 | 2946 | 2912 | . 2877 | . 2843 | . 2810 | 2776 |
| -0.4 | . 3446 | . 3409 | . 3372 | . 3335 | . 3300 | . 3264 | . 3228 | . 3192 | . 3156 | 3121 |
| -0.3 | . 3821 | . 3783 | . 3745 | . 3707 | . 3669 | . 3632 | . 3594 | . 3557 | . 3520 | . 3483 |
| -0.2 | . 4207 | . 4168 | . 4129 | . 4090 | . 4052 | . 4013 | . 3974 | . 3936 | . 3897 | . 3859 |
| -0.1 | . 4602 | . 4562 | 4522 | 4483 | . 4443 | . 4404 | . 4364 | . 4325 | . 4286 | 4247 |
| 0.0 | . 5000 | . 4960 | 4920 | 4880 | . 4840 | . 4801 | . 4761 | . 4721 | . 4681 | . 4641 |

Cumulative probabilities for POSITIVE z-values are shown below.

| z | . 00 | . 01 | . 02 | . 03 | . 04 | . 05 | . 06 | . 07 | . 08 | . 09 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | . 5000 | . 5040 | . 5080 | . 5120 | . 5160 | . 5199 | . 5239 | . 5279 | . 5319 | . 5359 |
| 0.1 | . 5398 | . 5438 | . 5478 | . 5517 | . 5557 | . 5596 | . 5636 | . 5675 | . 5714 | . 5753 |
| 0.2 | . 5793 | . 5832 | . 5871 | . 5910 | . 5948 | . 5987 | . 6026 | . 6064 | . 6103 | . 6141 |
| 0.3 | . 6179 | . 6217 | . 6255 | . 6293 | . 6331 | . 6368 | . 6406 | . 6443 | . 6480 | . 6517 |
| 0.4 | . 6554 | . 6591 | . 6628 | . 6664 | . 6700 | . 6736 | . 6772 | . 6808 | . 6844 | . 6879 |
| 0.5 | . 6915 | . 6950 | . 6985 | . 7019 | . 7054 | . 7088 | . 7123 | . 7157 | . 7190 | . 7224 |
| 0.6 | . 7257 | 7291 | . 7324 | . 7357 | . 7389 | . 7422 | . 7454 | . 7486 | . 7517 | . 7549 |
| 0.7 | . 7580 | . 7611 | . 7642 | . 7673 | . 7704 | . 7734 | . 7764 | . 7794 | . 7823 | . 7852 |
| 0.8 | . 7881 | . 7910 | . 7939 | . 7967 | . 7995 | . 8023 | . 8051 | . 8078 | . 8106 | . 8133 |
| 0.9 | . 8159 | . 8186 | . 8212 | . 8238 | . 8264 | . 8289 | . 8315 | . 8340 | . 8365 | . 8389 |
| 1.0 | . 8413 | . 8438 | . 8461 | . 8485 | . 8508 | . 8531 | . 8554 | . 8577 | . 8599 | . 8621 |
| 1.1 | . 8643 | . 8665 | . 8686 | . 8708 | . 8729 | . 8749 | . 8770 | . 8790 | . 8810 | . 8830 |
| 1.2 | . 8849 | . 8869 | . 8888 | . 89007 | . 8925 | . 8944 | . 8962 | . 8980 | . 8997 | . 9015 |
| 1.3 | . 9032 | . 9049 | . 9066 | . 9082 | . 9099 | . 9115 | . 9131 | . 9147 | . 9162 | . 9177 |
| 1.4 | . 9192 | . 9207 | . 9222 | . 9236 | . 9251 | . 9265 | . 9279 | . 9292 | . 9306 | . 9319 |
| 1.5 | . 9332 | . 9345 | . 9357 | . 9370 | . 9382 | . 9394 | . 9406 | . 9418 | . 9429 | . 9441 |
| 1.6 | . 9452 | . 9463 | . 9474 | . 9484 | . 9495 | . 9505 | . 9515 | . 9525 | . 9535 | . 9545 |
| 1.7 | . 9554 | . 9564 | . 9573 | . 9582 | . 9591 | . 9599 | . 9608 | . 9616 | . 9625 | . 9633 |
| 1.8 | . 9641 | . 9649 | . 9656 | . 9664 | . 9671 | . 9678 | . 9686 | . 9693 | . 9699 | . 9706 |
| 1.9 | . 9713 | . 9719 | . 9726 | . 9732 | . 9738 | . 9744 | . 9750 | . 9756 | . 9761 | . 9767 |
| 2.0 | . 9772 | . 9778 | . 9783 | . 9788 | . 9793 | . 9798 | . 9803 | . 9808 | . 9812 | . 9817 |
| 2.1 | . 9821 | . 9826 | . 9830 | . 9834 | . 9838 | . 9842 | . 9846 | . 9850 | . 9854 | . 9857 |
| 2.2 | . 9861 | . 9864 | . 9868 | . 9871 | . 9875 | . 9878 | . 9881 | . 9884 | . 9887 | . 9890 |
| 2.3 | . 9893 | . 9896 | . 9898 | . 9901 | . 9904 | . 9906 | . 9909 | . 9911 | . 9913 | . 9916 |
| 2.4 | . 9918 | . 9920 | . 9922 | . 9925 | . 9927 | . 9929 | . 9931 | . 9932 | . 9934 | . 9936 |
| 2.5 | . 9938 | . 9940 | . 9941 | . 9943 | . 9945 | . 9946 | . 9948 | . 9949 | . 9951 | . 9952 |
| 2.6 | . 9953 | . 9955 | . 9956 | . 9957 | . 9959 | . 9960 | . 9961 | . 9962 | . 9963 | . 99664 |
| 2.7 | . 9965 | . 9966 | . 9967 | . 9968 | . 9969 | . 9970 | . 9971 | . 9972 | . 9973 | . 9974 |
| 2.8 | . 9974 | . 9975 | . 9976 | . 9977 | . 9977 | . 9978 | . 9979 | . 9979 | . 9980 | . 9981 |
| 2.9 | . 9981 | . 9982 | . 9982 | . 9983 | . 9984 | . 9984 | . 9985 | . 9985 | . 9986 | . 9986 |
| 3.0 | . 9987 | . 9987 | . 9987 | . 9988 | . 9988 | . 9989 | . 9989 | . 9989 | . 9990 | . 9990 |
| 3.1 | . 9990 | . 9991 | . 9991 | . 9991 | . 9992 | . 9992 | . 9992 | . 9992 | . 9993 | . 9993 |
| 3.2 | . 9993 | . 9993 | . 9994 | . 9994 | . 9994 | . 9994 | . 9994 | . 9995 | . 9995 | . 9995 |
| 3.3 | . 9995 | . 9995 | . 9995 | . 9996 | . 9996 | . 9996 | . 9996 | . 9999 | . 9996 | . 9997 |
| 3.4 | . 9997 | . 9997 | . 9997 | . 9997 | . 9997 | . 9997 | . 9997 | . 9997 | . 9997 | . 9998 |

TABLE of CRITICAL VALUES for STUDENT'S $t$ DISTRIBUTIONS
Column headings denote probabilities $(\alpha)$ above tabulated values.

| d.f. | 0.40 | 0.25 | 0.10 | 0.05 | 0.04 | 0.025 | 0.02 | 0.01 | 0.005 | 0.0025 | 0.001 | 0.0005 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.325 | 1.000 | 3.078 | 6.314 | 7.916 | 12.706 | 15.894 | 31.821 | 63.656 | 127.321 | 318.289 | 636.578 |
| 2 | 0.289 | 0.816 | 1.886 | 2.920 | 3.320 | 4.303 | 4.849 | 6.965 | 9.925 | 14.089 | 22.328 | 31.600 |
| 3 | 0.277 | 0.765 | 1.638 | 2.353 | 2.605 | 3.182 | 3.482 | 4.541 | 5.841 | 7.453 | 10.214 | 12.924 |
| 4 | 0.271 | 0.741 | 1.533 | 2.132 | 2.333 | 2.776 | 2.999 | 3.747 | 4.604 | 5.598 | 7.173 | 8.610 |
| 5 | 0.267 | 0.727 | 1.476 | 2.015 | 2.191 | 2.571 | 2.757 | 3.365 | 4.032 | 4.773 | 5.894 | 6.869 |
| 6 | 0.265 | 0.718 | 1.440 | 1.943 | 2.104 | 2.447 | 2.612 | 3.143 | 3.707 | 4.317 | 5.208 | 5.959 |
| 7 | 0.263 | 0.711 | 1.415 | 1.895 | 2.046 | 2.365 | 2.517 | 2.998 | 3.499 | 4.029 | 4.785 | 5.408 |
| 8 | 0.262 | 0.706 | 1.397 | 1.860 | 2.004 | 2.306 | 2.449 | 2.896 | 3.355 | 3.833 | 4.501 | 5.041 |
| 9 | 0.261 | 0.703 | 1.383 | 1.833 | 1.973 | 2.262 | 2.398 | 2.821 | 3.250 | 3.690 | 4.297 | 4.781 |
| 10 | 0.260 | 0.700 | 1.372 | 1.812 | 1.948 | 2.228 | 2.359 | 2.764 | 3.169 | 3.581 | 4.144 | 4.587 |
| 11 | 0.260 | 0.697 | 1.363 | 1.796 | 1.928 | 2.201 | 2.328 | 2.718 | 3.106 | 3.497 | 4.025 | 4.437 |
| 12 | 0.259 | 0.695 | 1.356 | 1.782 | 1.912 | 2.179 | 2.303 | 2.681 | 3.055 | 3.428 | 3.930 | 4.318 |
| 13 | 0.259 | 0.694 | 1.350 | 1.771 | 1.899 | 2.160 | 2.282 | 2.650 | 3.012 | 3.372 | 3.852 | 4.221 |
| 14 | 0.258 | 0.692 | 1.345 | 1.761 | 1.887 | 2.145 | 2.264 | 2.624 | 2.977 | 3.326 | 3.787 | 4.140 |
| 15 | 0.258 | 0.691 | 1.341 | 1.753 | 1.878 | 2.131 | 2.249 | 2.602 | 2.947 | 3.286 | 3.733 | 4.073 |
| 16 | 0.258 | 0.690 | 1.337 | 1.746 | 1.869 | 2.120 | 2.235 | 2.583 | 2.921 | 3.252 | 3.686 | 4.015 |
| 17 | 0.257 | 0.689 | 1.333 | 1.740 | 1.862 | 2.110 | 2.224 | 2.567 | 2.898 | 3.222 | 3.646 | 3.965 |
| 18 | 0.257 | 0.688 | 1.330 | 1.734 | 1.855 | 2.101 | 2.214 | 2.552 | 2.878 | 3.197 | 3.610 | 3.922 |
| 19 | 0.257 | 0.688 | 1.328 | 1.729 | 1.850 | 2.093 | 2.205 | 2.539 | 2.861 | 3.174 | 3.579 | 3.883 |
| 20 | 0.257 | 0.687 | 1.325 | 1.725 | 1.844 | 2.086 | 2.197 | 2.528 | 2.845 | 3.153 | 3.552 | 3.850 |
| 21 | 0.257 | 0.686 | 1.323 | 1.721 | 1.840 | 2.080 | 2.189 | 2.518 | 2.831 | 3.135 | 3.527 | 3.819 |
| 22 | 0.256 | 0.686 | 1.321 | 1.717 | 1.835 | 2.074 | 2.183 | 2.508 | 2.819 | 3.119 | 3.505 | 3.792 |
| 23 | 0.256 | 0.685 | 1.319 | 1.714 | 1.832 | 2.069 | 2.177 | 2.500 | 2.807 | 3.104 | 3.485 | 3.768 |
| 24 | 0.256 | 0.685 | 1.318 | 1.711 | 1.828 | 2.064 | 2.172 | 2.492 | 2.797 | 3.091 | 3.467 | 3.745 |
| 25 | 0.256 | 0.684 | 1.316 | 1.708 | 1.825 | 2.060 | 2.167 | 2.485 | 2.787 | 3.078 | 3.450 | 3.725 |
| 26 | 0.256 | 0.684 | 1.315 | 1.706 | 1.822 | 2.056 | 2.162 | 2.479 | 2.779 | 3.067 | 3.435 | 3.707 |
| 27 | 0.256 | 0.684 | 1.314 | 1.703 | 1.819 | 2.052 | 2.158 | 2.473 | 2.771 | 3.057 | 3.421 | 3.689 |
| 28 | 0.256 | 0.683 | 1.313 | 1.701 | 1.817 | 2.048 | 2.154 | 2.467 | 2.763 | 3.047 | 3.408 | 3.674 |
| 29 | 0.256 | 0.683 | 1.311 | 1.699 | 1.814 | 2.045 | 2.150 | 2.462 | 2.756 | 3.038 | 3.396 | 3.660 |
| 30 | 0.256 | 0.683 | 1.310 | 1.697 | 1.812 | 2.042 | 2.147 | 2.457 | 2.750 | 3.030 | 3.385 | 3.646 |
| 31 | 0.256 | 0.682 | 1.309 | 1.696 | 1.810 | 2.040 | 2.144 | 2.453 | 2.744 | 3.022 | 3.375 | 3.633 |
| 32 | 0.255 | 0.682 | 1.309 | 1.694 | 1.808 | 2.037 | 2.141 | 2.449 | 2.738 | 3.015 | 3.365 | 3.622 |
| 33 | 0.255 | 0.682 | 1.308 | 1.692 | 1.806 | 2.035 | 2.138 | 2.445 | 2.733 | 3.008 | 3.356 | 3.611 |
| 34 | 0.255 | 0.682 | 1.307 | 1.691 | 1.805 | 2.032 | 2.136 | 2.441 | 2.728 | 3.002 | 3.348 | 3.601 |
| 35 | 0.255 | 0.682 | 1.306 | 1.690 | 1.803 | 2.030 | 2.133 | 2.438 | 2.724 | 2.996 | 3.340 | 3.591 |
| 36 | 0.255 | 0.681 | 1.306 | 1.688 | 1.802 | 2.028 | 2.131 | 2.434 | 2.719 | 2.990 | 3.333 | 3.582 |
| 37 | 0.255 | 0.681 | 1.305 | 1.687 | 1.800 | 2.026 | 2.129 | 2.431 | 2.715 | 2.985 | 3.326 | 3.574 |
| 38 | 0.255 | 0.681 | 1.304 | 1.686 | 1.799 | 2.024 | 2.127 | 2.429 | 2.712 | 2.980 | 3.319 | 3.566 |
| 39 | 0.255 | 0.681 | 1.304 | 1.685 | 1.798 | 2.023 | 2.125 | 2.426 | 2.708 | 2.976 | 3.313 | 3.558 |
| 40 | 0.255 | 0.681 | 1.303 | 1.684 | 1.796 | 2.021 | 2.123 | 2.423 | 2.704 | 2.971 | 3.307 | 3.551 |
| 60 | 0.254 | 0.679 | 1.296 | 1.671 | 1.781 | 2.000 | 2.099 | 2.390 | 2.660 | 2.915 | 3.232 | 3.460 |
| 80 | 0.254 | 0.678 | 1.292 | 1.664 | 1.773 | 1.990 | 2.088 | 2.374 | 2.639 | 2.887 | 3.195 | 3.416 |
| 100 | 0.254 | 0.677 | 1.290 | 1.660 | 1.769 | 1.984 | 2.081 | 2.364 | 2.626 | 2.871 | 3.174 | 3.390 |
| 120 | 0.254 | 0.677 | 1.289 | 1.658 | 1.766 | 1.980 | 2.076 | 2.358 | 2.617 | 2.860 | 3.160 | 3.373 |
| 140 | 0.254 | 0.676 | 1.288 | 1.656 | 1.763 | 1.977 | 2.073 | 2.353 | 2.611 | 2.852 | 3.149 | 3.361 |
| 160 | 0.254 | 0.676 | 1.287 | 1.654 | 1.762 | 1.975 | 2.071 | 2.350 | 2.607 | 2.847 | 3.142 | 3.352 |
| 180 | 0.254 | 0.676 | 1.286 | 1.653 | 1.761 | 1.973 | 2.069 | 2.347 | 2.603 | 2.842 | 3.136 | 3.345 |
| 200 | 0.254 | 0.676 | 1.286 | 1.653 | 1.760 | 1.972 | 2.067 | 2.345 | 2.601 | 2.838 | 3.131 | 3.340 |
| 250 | 0.254 | 0.675 | 1.285 | 1.651 | 1.758 | 1.969 | 2.065 | 2.341 | 2.596 | 2.832 | 3.123 | 3.330 |
| inf | 0.253 | 0.674 | 1.282 | 1.645 | 1.751 | 1.960 | 2.054 | 2.326 | 2.576 | 2.807 | 3.090 | 3.290 |

## APPENDIX E: The Chi-Square Distribution

|  |  |  | - |  |  |  |  |  | - |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| dn | . 995 | . 990 | . 975 | . 950 | . 900 | . 750 | . 500 | . 250 | . 100 | . 050 | . 025 | . 010 | . 005 |
| 1 | 0.00004 | 0.00016 | 0.00098 | 0.00393 | 0.01579 | 0.10153 | 0.45494 | 1.32330 | 2.70554 | 3.84146 | 5.02389 | 6.63490 | 7.87944 |
| 2 | 0.01003 | 0.02010 | 0.05064 | 0.10259 | 0.21072 | 0.57536 | 1.38629 | 2.77259 | 4.60517 | 5.99146 | 7.37776 | 9.21034 | 10.59663 |
| 3 | 0.07172 | 0.11483 | 0.21580 | 0.35185 | 0.58437 | 1.21253 | 2.36597 | 4.10834 | 6.25139 | 7.81473 | 9.34840 | 11.34487 | 12.83816 |
| 4 | 0.20699 | 0.29711 | 0.48442 | 0.71072 | 1.06362 | 1.92256 | 3.35669 | 5.38527 | 7.77944 | 9.48773 | 11.14329 | 13.27670 | 14.86026 |
| 5 | 0.41174 | 0.55430 | 0.83121 | 1.14548 | 1.61031 | 2.67460 | 4.35146 | 6.62568 | 9.23636 | 11.07050 | 12.83250 | 15.08627 | 16.74960 |
| 6 | 0.67573 | 0.87209 | 1.23734 | 1.63538 | 2.20413 | 3.45460 | \| 5.34812 | 7.84080 | 10.64464 | 12.59159 | 14.44938 | 16.81189 | 18.54758 |
| 7 | 0.98926 | 1.23904 | 1.68987 | 2.16735 | 2.83311 | 4.25485 | 6.34581 | 9.03715 | 12.01704 | 14.06714 | 16.01276 | 18.47531 | 20.27774 |
| 8 | 1.3444] | 1.64650 | 2.17973 | 2.73264 | 3.48954 | 5.07064 | 7.34412 | 10.21885 | 13.36157 | 15.50731 | 17.53455 | 20.09024 | 21.95495 |
| 9 | 1.73493 | 2.08790 | 2.70039 | 3.32511 | 4.16816 | 5.89883 | 8.34283 | 11.38875 | 14.68366 | 16.91898 | 19.02277 | 21.66599 | 23.58935 |
| 10 | 2.15586 | 2.55821 | 3.24697 | 3.94030 | 4.86518 | 6.73720 | 9.34182 | 12.54886 | 15.98718 | 18.30704 | 20,48318 | 23.20925 | 25.18818 |
| 11 | 2.60322 | 3.05348 | 3.81575 | 4.57481 | 5.57778 | 7.58414 | 10.34100 | 13.70069 | 17.27501 | 19.67514 | 21,92005 | 24.72497 | 26.75685 |
| 12 | 3.07382 | 3.57057 | 4.40379 | 5.22603 | 6.30380 | 8.43842 | 11.34032 | 14.84540 | 18.54935 | 21.02607 | 23.33666 | 26.21697 | 28.29952 |
| 13 | 3.56503 | 4.10692 | 5.00875 | 5.89186 | 7.04150 | 9.29907 | 12.33976 | 15.98391 | 19.81193 | 22,36203 | 24.73560 | 27.68825 | 29.81947 |
| 14 | 4.07467 | 4.66043 | 5.62873 | 6.57063 | 7.78953 | 10.16531 | 13.33927 | 17.11693 | 21.06414 | 23.68479 | 26.11895 | 29.14124 | 31.31935 |
| 15 | 14.60092 | 5.22935 | 6.26214 | 7.26094 | 8.54676 | 11.03654 | 14.33886 | 18.24509 | 22.30713 | 24.99579 | 27.48839 | 30.57791 | 32.80132 |
| 16 | 5.14221 | 5.81221 | 6.90766 | 7.96165 | 9.31224 | -11.91222 | 15.33850 | 19.36886 | 23.54183 | 26.29623 | 28.84535 | 31.99993 | 34.26719 |
| 17 | 5.69722 | 6.40776 | 7.56419 | \$8.67176 | , 10.08519 | 12.79193 | 16.33818 | 20.48868 | 24.76904 | 27.58711 | 30.19101 | 33.40866 | 35.71847 |
| 18 | 6.26480 | 7.01491 | 8.23075 | 9.39046 | 10.86494 | 13.67529 | 17.33790 | 21.60489 | 25.98942 | 28.86930 | 31.52638 | 34.30531 | 37.15645 |
| 19 | 6.84397 | 7.63273 | 8.90652 | 10.11701 | 11.65091 | 14.56200 | 18.33765 | 22.71781 | 27.20357 | 30.14353 | 32.85233 | 36.19087 | 38.58226 |
| 20 | 7.43384 | 8.26040 | 9.59078 | 10.85081 | 12.44261 | 15.45177 | 19.33743 | 23.82769 | 28.41198 | 31.41043 | 34.16961 | 37.56623 | 39.99685 |
| 21 | 8.03365 | 8.89720 | 10.28290 | 11.59131 | 13.23960 | 16.34438 | 20.33723 | 24.93478 | 29.61509 | 32.67057 | 35.47888 | 38.93217 | 41.40106 |
| 22 | 8.64272 | 19.54249 | 10.98232 | 12.33801 | 14.04149 | 17.23962 | 21.33704 | 26.03927 | 30.81328 | 33.92444 | 36.78071 | 40.28936 | 42.79565 |
| 23 | 9.26042 | 10.19572 | 11.68855 | 13.09051 | 14.84796 | 18.13730 | 22.33688 | 27.14134 | 32.00690 | 35.17246 | 38.07563 | 41.63840 | 44.18128 |
| 24 | 9.88623 | 10.85636 | 12.40115 | 13.84843 | 15.65868 | 19.03725 | 23.33673 | 28.24115 | 33.19624 | 36.41503 | 39.36408 | 42.97982 | 45.55851 |
| 25 | 10.51965 | 11.52398 | 13.11972 | 14.61141 | 16.47341 | 19.93934 | 24.33659 | 29.33885 | 34.38159 | 37.65248 | 40.64647 | 44.31410 | 46.92789 |
| 26 | 11.16024 | 12.19815 | 13.84390 | 15.37916 | 17.29188 | 20.84343 | 25.33646 | 30,43457 | 35.56317 | 38.88514 | 41.92317 | 45.64168 | 48.28988 |
| \| 27 | 11.80759 | 12.87850 | 14.57338 | 16.15140 | 18.11390 | 21.74940 | 26.33634 | 31.52841 | 36.74122 | 40.11327 | 43.19451 | 46.96294 | 49.64492 |
| 28 | 12.46134 | 13.56471 | 15.30786 | 16.92788 | 18.93924 | 22.65716 | 27.33623 | 32.62049 | 37.91592 | 41.33714 | 44.46079 | 48.27824 | 50.99338 |
| 29 | 13.12115 | 14.25645 | 16.04707 | 17.70837 | 19.76774 | 23.56659 | 28.33613 | 33.71091 | 39.08747 | 42.55697 | 45.72229 | 49.58788 | 52.33562 |
| 30 | 13.78672 | 14.95346 | 16.79077 | 18.49266 | 20.59923 | 24.47761 | 29.33603 | 34.79974 | 40.25602 | 43.77297 | 46.97924 | 50.89218 | 53.67196 |

$$
\begin{aligned}
& M_{e}=L+\frac{c[0.5 n-C F]}{f_{m e}} \\
& M_{0}=L+\frac{c\left[f_{m}-f_{m-1}\right]}{2 f_{m}-f_{m-1}-f_{m+1}} \\
& \bar{x}=\frac{\sum f x}{n} \\
& \bar{x} \pm Z_{\frac{\alpha}{2}}\left(\frac{\sigma}{\sqrt{n}}\right) \\
& t_{\text {stat }}=\frac{\bar{x}-\mu}{\frac{s}{\sqrt{n}}} \\
& \chi_{s t a t}^{2}=\frac{(n-1) S^{2}}{\sigma^{2}} \\
& E(X)=\sum x_{i} p_{i} \\
& P(X=x)=\binom{n}{x} p^{x} q^{n-x} \\
& b=\frac{n \sum x y-\sum x \sum y}{n \sum x^{2}-\left(\sum x\right)^{2}} \\
& \hat{\pi}=\frac{x_{1}+x_{2}}{n_{1}+n_{2}} \\
& \bar{x}=\frac{\sum x}{n} \\
& n=\frac{z^{2} p(1-p)}{E^{2}} \\
& p \pm z \sqrt{\frac{p q}{n}} \\
& Z=\frac{x-\mu}{\sigma} \\
& P(X=k)=\frac{e^{-\theta} \theta^{x}}{x!} \\
& Z=\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}} \\
& \left(p_{1}-p_{2}\right) \pm Z_{\frac{\alpha}{2}}\left(\sqrt{\frac{p_{1} q_{1}}{n_{1}}+\frac{p_{2} q_{2}}{n_{2}}}\right) \\
& \frac{(n-1) S^{2}}{\chi^{2} \frac{\alpha}{2}, n-1}<\sigma^{2}<\frac{(n-1) S^{2}}{\chi^{2}{ }_{1-\frac{\alpha}{2}, n-1}} \\
& \chi_{s t a t}^{2}=\sum \frac{\left(f_{0}-f_{e}\right)^{2}}{f_{e}} \\
& V(X)=\sum\left(x_{i}-\mu\right)^{2} p\left(x_{i}\right) \\
& n=\frac{Z^{2}\left(\sigma^{2}\right)}{E^{2}} \\
& a=\bar{y}-b \bar{x} \\
& Z_{c a l}=\frac{\left(p_{1}-p_{2}\right)-\left(\pi_{1}-\pi_{2}\right)}{\sqrt{\hat{\pi}(1-\hat{\pi})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} \\
& s^{2}=\frac{\Sigma\left(x_{i}-\bar{x}\right)^{2}}{n-1} \\
& s^{2}=\frac{\sum\left(x_{i}-\bar{x}\right)^{2} f_{i}}{n-1} \\
& \bar{x} \pm t_{\frac{\alpha}{2}, n-1}\left(\frac{s}{\sqrt{n}}\right) \\
& \left(\bar{x}_{1}-\bar{x}_{2}\right) \pm t \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}} \\
& t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\bar{\mu}_{2}\right)}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}} \\
& p \pm Z_{\frac{\alpha}{2}}\left(\sqrt{\frac{p q}{n}}\right) \\
& f_{e}=\frac{R T \times C T}{G T}
\end{aligned}
$$

