

ПАМІВІА UNIVERSITY OF SCIENCE AND TECHNOLOGY

Faculty of Health, Natural **Resources and Applied** Sciences

School of Natural and Applied Sciences

Department of Mathematics, Statistics and Actuarial Science 13 Jackson Kaujeua Street T: +264 61 207 2913 Private Bag 13388 E: msas@nust.na Windhoek NAMIBIA

W: www.nust.na

QUALIFICATION : BACHELOR of SCIENCE	
QUALIFICATION CODE: 07BOSC	LEVEL: 6
COURSE: CALCULUS 2	COURSE CODE: CLS601S
DATE: JANUARY 2024	SESSION: 1
DURATION: 3 HOURS	MARKS: 100

SECOND OPPORTUNITY / SUPPLEMENTARY EXAMINATION: QUESTION PAPER

EXAMINER:	Mr. Benson E. Obabueki		
MODERATOR:	Dr. David liyambo		

INSTRUCTIONS

- 1. Answer all questions on the separate answer sheet.
- 2. Please write neatly and legibly.
- 3. Do not use the left side margin of the exam paper. This must be allowed for the examiner.
- 4. No books, notes and other additional aids are allowed.
- 5. Mark all answers clearly with their respective question numbers.
- 6. Show all your working/calculation steps.

PERMISSIBLE MATERIALS:

1. Non-Programmable Calculator

ATTACHEMENTS

1. None

This paper consists of 2 pages excluding this front page

Question 1 (28 marks)

1.1	Determine the anti-derivative of x	sec	(x^{3})	using the method of substitution. (6)
-----	------------------------------------	-----	-----------	-------------------------------------	----

1.2 Determine the anti-derivative of $(3x+4)\sin x$ using integration by parts. (7)

1.3 Determine the anti-derivative of $\frac{x+2}{(x-1)(x+3)}$ using integration by partial fractions.

1.4 Determine the integral
$$\int \frac{dx}{\sin x}$$
 using the t-formula. (8)

Question 2 (18 marks)

- 2.1 Consider the function $f(x) = x^4 + 2x^2 + 3$. Find the quadratic interpolation polynomial $P_2(x)$ that interpolates f at the nodes $x_0 = -1$, $x_1 = 0$ and $x_2 = 1$. (11)
- 2.2 Determine the value of *n* to estimate the definite integral $\int_0^1 e^{x^2} dx$ within 0.001 accuracy using the trapezoidal rule. (7)

Question 3 (30 marks)

- 3.1 Determine the area of the region enclosed by the graphs of the functions $y = x^2$ and $y = -x^2 + 18x$. (8)
- 3.2 Calculate the length of the first quarter of the circle $y^2 + x^2 = 1$. (10)
- 3.3 Determine the area of the region generated when the arc of $y^2 = 12x$ between x = 1and x = 3, is rotated completely about the x-axis. (12)

Question 4 (24 marks)

4.1 Find the volume of the solid formed when the plane figure bounded by $y = 5\cos 2x$, the x-axis and ordinates at x = 0 and $x = \frac{\pi}{4}$, rotates about the x-axis through a complete revolution. (6)

Page 1 of 2

- 4.2 Determine the length of the arc of the curve $r = \cos^3(\frac{\theta}{3})$ between $\theta = 0$ and $\theta = 3\pi$. Use $Arc \, length = \int_{\theta}^{\theta_2} \sqrt{r^2 + (\frac{dr}{d\theta})^2} \, d\theta$ (8)
- 4.3 Given the Maclaurin series $\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$, write down the first four terms of $\cos x$. Hence estimate $\cos(0.2)$ using the sixth-degree Maclaurin polynomial. (10)

End of paper

Total marks: 100.