

## NAMIBIA UNIVERSITY OF SCIENCE AND TECHNOLOGY

Faculty of Health, Natural **Resources and Applied** Sciences

School of Natural and Applied Sciences

Department of Mathematics, Statistics and Actuarial Science 13 Jackson Kaujeua Street T: +264 61 207 2913 Private Bag 13388 Windhoek NAMIBIA

E: msas@nust.na W: www.nust.na

| QUALIFICATION : BACHELOR of SCIENCE IN APPLIED MA<br>BACHELOR of SCIENCE | THEMATICS AND STATISTICS & |
|--------------------------------------------------------------------------|----------------------------|
| QUALIFICATION CODE: 07BSAM & 07BSOC                                      | LEVEL: 5                   |
| COURSE: INTRODUCTION TO APPLIED STATISTICS                               | COURSE CODE: IAS501S       |
| DATE: JANUARY 2024                                                       | SESSION: 1                 |
| DURATION: 3 HOURS                                                        | MARKS: 100                 |

#### SECOND OPPORTUNITY / SUPPLEMENTARY: EXAMINATION QUESTION PAPER

**EXAMINER:** 

MR. ANDREW ROUX

MODERATOR:

DR. DISMAS NTIRAMPEBA

#### INSTRUCTIONS

- 1. Answer all questions on the separate answer sheet.
- 2. Please write neatly and legibly.
- 3. Do not use the left side margin of the exam paper. This must be allowed for the examiner.
- 4. No books, notes and other additional aids are allowed.
- 5. Mark all answers clearly with their respective question numbers.

#### **PERMISSIBLE MATERIALS:**

1. Non-Programmable Calculator

#### **ATTACHEMENTS**

- 1. Statistical Formulae Sheet
- 2. Standard Normal Probability Distribution Table
- 3. 1 x A4 Graph Sheet

### This paper consists of 4 pages including this front page

## QUESTION 1 [20]

9 × 10 ×

ž., v

**1.1** Which of the following measures of central tendency can reliably be used when dataset has outliers?

| a) Mean                      | b) Median      | c) Mode          | d) All the above         |                     | [2]      |
|------------------------------|----------------|------------------|--------------------------|---------------------|----------|
| <b>1.2</b> A sample i        | S              |                  |                          |                     |          |
| a) An experim                | ent in the pop | oulation         | b) A subset of the po    | pulation            |          |
| c) A variable in             | n the populati | on               | d) An outcome of the     | e population        | [2]      |
| 1.3 A paramet                | ter refers to  |                  |                          |                     |          |
| a) Calculation<br>population | made from th   | ne population    | b) A measurement ti      | nat is made from th | e        |
| c) A value obs               | erved in the e | experiment       | d) All of the above      |                     | [2]      |
| 1.4 Weight is                | av             | variable         |                          |                     |          |
| a) Continuous                | b) Dis         | screte           | c) Ordinal               | d) Interval         | [2]      |
| 1.5 Researche                | ers do samplin | g because of all | of the following reaso   | ons except          |          |
| a) Reduce cos                | t b) Ca        | n be done in a s | shorter time frame       |                     |          |
| c) Sampling is               | interesting    | d) Easy to ma    | anage due to logistics r | requirements        | [2]      |
| 1.6 Rating the               | quality of ou  | r magazine (exc  | ellent, good, fair or po | por) is a           | variable |
| a) Qualitative               | b) Qu          | antitative       | c) Ordinal               | d) Interval         | [2]      |
| 1.7 Which of t               | the following  | is NOT a possibl | e probability            |                     |          |
| a) <u>65</u>                 | b) 1.16        | c) 0             | d) All of the provide    | d                   | [2]      |

2

**1.8** A student is chosen at random from a class of 28 girls and 12 boys. What is the probability that the student is **NOT** a boy?

| a) <u>3</u><br>10 | b) $\frac{28}{12}$    | c) 0                | d) <del>7</del> 10 |                                | [2] |
|-------------------|-----------------------|---------------------|--------------------|--------------------------------|-----|
| <b>1.9</b> On     | a multiple choice t   | est, each questior  | n has 4 possible   | e answers. If you make a rando | m   |
| guess             | on the first questior | n, what is the prol | bability that yo   | u are correct?                 |     |
| a)                | 4 b) C                | )                   | c) 0.25            | d) 1                           | [2] |
|                   |                       |                     |                    |                                |     |

1.10 A 6-sided die is rolled. What is the probability of rolling a 3 or a 6?

a) ½ b) 1/6 c) 1/3 d) 0.25 [2]

## QUESTION 2 [20]

A sample of 10 time periods (in days) that elapsed between the taking and delivery of an order at a company:

| 75 | 97 | 71 | 65 | 84 | 65 | 84 | 27 | 43 | 50 |  |
|----|----|----|----|----|----|----|----|----|----|--|
|----|----|----|----|----|----|----|----|----|----|--|

For the distribution above, calculate the:

| 2.1) | Range                    | (2) |
|------|--------------------------|-----|
| 2.2) | Mode                     | (2) |
| 2.3) | Median                   | (3) |
| 2.4) | Arithmetic mean          | (3) |
| 2.5) | Variance                 | (5) |
| 2.6) | Standard deviation       | (2) |
| 2.7) | Coefficient of variation | (3) |

### QUESTION 3 [30]

3.1) A recent survey indicates that 90% of university lecturers run a private business in their spare time. Thus, in a random sample of 25 university lecturers, what is the probability that:

| 3.1.1) | Exactly 20 of them run a private business in their spare time       | (5) |
|--------|---------------------------------------------------------------------|-----|
| 3.1.2) | At least twenty of them run a private business in their spare time. | (5) |

3.1.3) At most twenty four of them run a private business in their spare time (5)

- 3.2 Shoprite / Checkers estimates that its maximum daily demand for electricity during the coming few weeks can be approximated by a normal distribution with a mean of 100kW and a standard deviation of 10 kW.
- 3.2.1) Determine the probability that the maximum daily demand will be between 100 kW and 125 kW (inclusive) (5)
- 3.2.2) Determine the probability that the maximum daily demand will be between 94 kW and 108 kW (inclusive) (5)
- 3.2.3) Determine the probability that a given day's maximum demand will be exceed 87 kW (inclusive)(5)

#### QUESTION 4 [9]

A shop owner has compiled the following information on the prices and quantities of fruit sales from December 2012 to December 2022

| ITEM    | PRICE | PRICE | QUANTITY | QUANTITY |
|---------|-------|-------|----------|----------|
|         | 2012  | 2022  | 2012     | 2022     |
| Apple   | 1.85  | 3.75  | 75       | 110      |
| Orange  | 1.50  | 2.25  | 140      | 260      |
| Avocado | 3.40  | 5.40  | 250      | 335      |

Using December 2012 as the base period, determine and interpret the simple price indexes for these three items in December 2022. [3 X 3 = 9]

### QUESTION 5 [21]

The asset turnovers, excluding cash and short-term investments, for the Konkiep Cash Loans from 2012 to 2022 are listed below (in \$mil):

| 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
|------|------|------|------|------|------|------|------|------|------|------|
| 3.33 | 3.84 | 3.51 | 3.30 | 3.18 | 3.42 | 3.37 | 3.99 | 4.14 | 4.50 | 4.95 |

5.1 Plot the time series data.

- 5.2 Determine the least squares trend line equation, using the sequential coding method with x = 1 in 2012. (9)
- 5.3 Use the trend line equation to estimate turnovers for 2010 and 2026 (6)

\*\*\*\*\*\*

(6)

## Statistical Formulae Sheet

$$\overline{x} = \frac{\sum x}{\sum f} \quad \text{; Median} = L + \frac{h(MedVal - F)}{f_m} \quad \text{; Mode} = L + \left(\frac{\blacktriangle_1}{\blacktriangle_1 + \bigstar_2}\right)c$$
$$S^2 = \frac{\sum x^2 - \frac{(\sum x)^2}{n}}{n-1}$$

 $P(X) = {}^{n}C_{x}p^{x}(1-p)^{n-x}$ , where X = 0, 1, 2, ...., n

$$P(x/u) = \frac{u^{x}}{x!}e^{-u}$$

Y' = bx + a

$$b = \frac{n\sum xy - \sum x\sum y}{n\sum x^2 - (\sum x)^2} \qquad \qquad \& \qquad a = \frac{\sum y - b\sum x}{n}$$

$$\mathsf{E}(\mathsf{X}) = \sum p(\mathsf{x}_i) \bullet \mathsf{x}_i \quad \& \operatorname{Var}(\mathsf{x}) = \sum p(\mathsf{x}) |\mathsf{x}|^2 - |\mathsf{u}|^2$$

$$Ip(L) = \frac{\sum P_i \times Q_b}{\sum P_b \times Q_b} \times 100 \quad \& \quad Iq(L) = \frac{\sum Q_i \times P_b}{\sum Q_b \times P_b} \times 100$$
$$Ip(P) = \quad \frac{\sum P_i \times Q_i}{\sum P_b \times Q_i} \times 100 \quad \& \quad Iq(P) = \frac{\sum Q_i \times P_i}{\sum Q_b \times P_i} \times 100$$

## Z - Table

ini na N

The table shows cumulative probabilities for the standard normal curve.

| Cumulative probabilities for NEGATIVE z-values are shown first. | SCROLL |
|-----------------------------------------------------------------|--------|
| DOWN to the 2 <sup>nd</sup> page for POSITIVE z                 |        |

| Z    | .00   | .01   | .02   | .03   | .04   | .05   | .06   | .07   | .08   | .09   |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| -3.4 | .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0002 |
| -3.3 | .0005 | .0005 | .0005 | .0004 | .0004 | .0004 | .0004 | .0004 | .0004 | .0003 |
| -3.2 | .0007 | .0007 | .0006 | .0006 | .0006 | .0006 | .0006 | .0005 | .0005 | .0005 |
| -3.1 | .0010 | .0009 | .0009 | .0009 | .0008 | .0008 | .0008 | .0008 | .0007 | .0007 |
| -3.0 | .0013 | .0013 | .0013 | .0012 | .0012 | .0011 | .0011 | .0011 | .0010 | .0010 |
| -2.9 | .0019 | .0018 | .0018 | .0017 | .0016 | .0016 | .0015 | .0015 | .0014 | .0014 |
| -2.8 | .0026 | .0025 | .0024 | .0023 | .0023 | .0022 | .0021 | .0021 | .0020 | .0019 |
| -2.7 | .0035 | .0034 | .0033 | .0032 | .0031 | .0030 | .0029 | .0028 | .0027 | .0026 |
| -2.6 | .0047 | .0045 | .0044 | .0043 | .0041 | .0040 | .0039 | .0038 | .0037 | .0036 |
| -2.5 | .0062 | .0060 | .0059 | .0057 | .0055 | .0054 | .0052 | .0051 | .0049 | .0048 |
| -2.4 | .0082 | .0080 | .0078 | .0075 | .0073 | .0071 | .0069 | .0068 | .0066 | .0064 |
| -2.3 | .0107 | .0104 | .0102 | .0099 | .0096 | .0094 | .0091 | .0089 | .0087 | .0084 |
| -2.2 | .0139 | .0136 | .0132 | .0129 | .0125 | .0122 | .0119 | .0116 | .0113 | .0110 |
| -2.1 | .0179 | .0174 | .0170 | .0166 | .0162 | .0158 | .0154 | .0150 | .0146 | .0143 |
| -2.0 | .0228 | .0222 | .0217 | .0212 | .0207 | .0202 | .0197 | .0192 | .0188 | .0183 |
| -1.9 | .0287 | .0281 | .0274 | .0268 | .0262 | .0256 | .0250 | .0244 | .0239 | .0233 |
| -1.8 | .0359 | .0351 | .0344 | .0336 | .0329 | .0322 | .0314 | .0307 | .0301 | .0294 |
| -1.7 | .0446 | .0436 | .0427 | .0418 | .0409 | .0401 | .0392 | .0384 | .0375 | .0367 |
| -1.6 | .0548 | .0537 | .0526 | .0516 | .0505 | .0495 | .0485 | .0475 | .0465 | .0455 |
| -1.5 | .0668 | .0655 | .0643 | .0630 | .0618 | .0606 | .0594 | .0582 | .0571 | .0559 |
| -1.4 | .0808 | .0793 | .0778 | .0764 | .0749 | .0735 | .0721 | .0708 | .0694 | .0681 |
| -1.3 | .0968 | .0951 | .0934 | .0918 | .0901 | .0885 | .0869 | .0853 | .0838 | .0823 |
| -1.2 | .1151 | .1131 | .1112 | .1093 | .1075 | .1056 | .1038 | .1020 | .1003 | .0985 |
| -1.1 | .1357 | .1335 | .1314 | .1292 | .1271 | .1251 | .1230 | .1210 | .1190 | .1170 |
| -1.0 | .1587 | .1562 | .1539 | .1515 | .1492 | .1469 | .1446 | .1423 | .1401 | .1379 |
| -0.9 | .1841 | .1814 | .1788 | .1762 | .1736 | .1711 | .1685 | .1660 | .1635 | .1611 |
| -0.8 | .2119 | .2090 | .2061 | .2033 | .2005 | .1977 | .1949 | .1922 | .1894 | .1867 |
| -0.7 | .2420 | .2389 | .2358 | .2327 | .2296 | .2266 | .2236 | .2206 | .2177 | .2148 |
| -0.6 | .2743 | .2709 | .2676 | .2643 | .2611 | .2578 | .2546 | .2514 | .2483 | .2451 |
| -0.5 | .3085 | .3050 | .3015 | .2981 | .2946 | .2912 | .2877 | .2843 | .2810 | .2776 |
| -0.4 | .3446 | .3409 | .3372 | .3336 | .3300 | .3264 | .3228 | .3192 | .3156 | .3121 |
| -0.3 | .3821 | .3783 | .3745 | .3707 | .3669 | .3632 | .3594 | .3557 | .3520 | .3483 |
| -0.2 | .4207 | .4168 | .4129 | .4090 | .4052 | .4013 | .3974 | .3936 | .3897 | .3859 |
| -0.1 | .4602 | .4562 | .4522 | .4483 | .4443 | .4404 | .4364 | .4325 | .4286 | .4247 |
| 0.0  | .5000 | .4960 | .4920 | .4880 | .4840 | .4801 | .4761 | .4721 | .4681 | .4641 |

| z   | .00   | .01   | .02   | .03   | .04   | .05   | .06   | .07   | .08   | .09   |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0.0 | .5000 | .5040 | .5080 | .5120 | .5160 | .5199 | .5239 | .5279 | .5319 | .5359 |
| 0.1 | .5398 | .5438 | .5478 | .5517 | .5557 | .5596 | .5636 | .5675 | .5714 | .5753 |
| 0.2 | .5793 | .5832 | .5871 | .5910 | .5948 | .5987 | .6026 | .6064 | .6103 | .6141 |
| 0.3 | .6179 | .6217 | .6255 | .6293 | .6331 | .6368 | .6406 | .6443 | .6480 | .6517 |
| 0.4 | .6554 | .6591 | .6628 | .6664 | .6700 | .6736 | .6772 | .6808 | .6844 | .6879 |
| 0.5 | .6915 | .6950 | .6985 | .7019 | .7054 | .7088 | .7123 | .7157 | .7190 | .7224 |
| 0.6 | .7257 | .7291 | .7324 | .7357 | .7389 | .7422 | .7454 | .7486 | .7517 | .7549 |
| 0.7 | .7580 | .7611 | .7642 | .7673 | .7704 | .7734 | .7764 | .7794 | .7823 | .7852 |
| 0.8 | .7881 | .7910 | .7939 | .7967 | .7995 | .8023 | .8051 | .8078 | .8106 | .8133 |
| 0.9 | .8159 | .8186 | .8212 | .8238 | .8264 | .8289 | .8315 | .8340 | .8365 | .8389 |
| 1.0 | .8413 | .8438 | .8461 | .8485 | .8508 | .8531 | .8554 | .8577 | .8599 | .8621 |
| 1.1 | .8643 | .8665 | .8686 | .8708 | .8729 | .8749 | .8770 | .8790 | .8810 | .8830 |
| 1.2 | .8849 | .8869 | .8888 | .8907 | .8925 | .8944 | .8962 | .8980 | .8997 | .9015 |
| 1.3 | .9032 | .9049 | .9066 | .9082 | .9099 | .9115 | .9131 | .9147 | .9162 | .9177 |
| 1.4 | .9192 | .9207 | .9222 | .9236 | .9251 | .9265 | .9279 | .9292 | .9306 | .9319 |
| 1.5 | .9332 | .9345 | .9357 | .9370 | .9382 | .9394 | .9406 | .9418 | .9429 | .9441 |
| 1.6 | .9452 | .9463 | .9474 | .9484 | .9495 | .9505 | .9515 | .9525 | .9535 | .9545 |
| 1.7 | .9554 | .9564 | .9573 | .9582 | .9591 | .9599 | .9608 | .9616 | .9625 | .9633 |
| 1.8 | .9641 | .9649 | .9656 | .9664 | .9671 | .9678 | .9686 | .9693 | .9699 | .9706 |
| 1.9 | .9713 | .9719 | .9726 | .9732 | .9738 | .9744 | .9750 | .9756 | .9761 | .9767 |
| 2.0 | .9772 | .9778 | .9783 | .9788 | .9793 | .9798 | .9803 | .9808 | .9812 | .9817 |
| 2.1 | .9821 | .9826 | .9830 | .9834 | .9838 | .9842 | .9846 | .9850 | .9854 | .9857 |
| 2.2 | .9861 | .9864 | .9868 | .9871 | .9875 | .9878 | .9881 | .9884 | .9887 | .9890 |
| 2.3 | .9893 | .9896 | .9898 | .9901 | .9904 | .9906 | .9909 | .9911 | .9913 | .9916 |
| 2.4 | .9918 | .9920 | .9922 | .9925 | .9927 | .9929 | .9931 | .9932 | .9934 | .9936 |
| 2.5 | .9938 | .9940 | .9941 | .9943 | .9945 | .9946 | .9948 | .9949 | .9951 | .9952 |
| 2.6 | .9953 | .9955 | .9956 | .9957 | .9959 | .9960 | .9961 | .9962 | .9963 | .9964 |
| 2.7 | .9965 | .9966 | .9967 | .9968 | .9969 | .9970 | .9971 | .9972 | .9973 | .9974 |
| 2.8 | .9974 | .9975 | .9976 | .9977 | .9977 | .9978 | .9979 | .9979 | .9980 | .9981 |
| 2.9 | .9981 | .9982 | .9982 | .9983 | .9984 | .9984 | .9985 | .9985 | .9986 | .9986 |
| 3.0 | .9987 | .9987 | .9987 | .9988 | .9988 | .9989 | .9989 | .9989 | .9990 | .9990 |
| 3.1 | .9990 | .9991 | .9991 | .9991 | .9992 | .9992 | .9992 | .9992 | .9993 | .9993 |
| 3.2 | .9993 | .9993 | .9994 | .9994 | .9994 | .9994 | .9994 | .9995 | .9995 | .9995 |
| 3.3 | .9995 | .9995 | .9995 | .9996 | .9996 | .9996 | .9996 | .9996 | .9996 | .9997 |
| 3.4 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9998 |

# Cumulative probabilities for POSITIVE z-values are shown below.

5 \* \*<sup>3</sup>