Faculty of Health, Natural Resources and Applied **Sciences** School of Natural and Applied Sciences Department of Mathematics, Statistics and Actuarial Science 13 Jackson Kaujeua Street T: +264 61 207 2913 Private Bag 13388 E: msas@nust.na Windhoek W: www.nust.na NAMIBIA | QUALIFICATION: BACHELOR of SCIENCE IN APPLIED MATHEMATICS AND STATISTICS & BACHELOR of SCIENCE | | | | | | | | | |--|----------------------|--|--|--|--|--|--|--| | QUALIFICATION CODE: 07BSAM & 07BSOC | LEVEL: 5 | | | | | | | | | COURSE: INTRODUCTION TO APPLIED STATISTICS | COURSE CODE: IAS501S | | | | | | | | | DATE: JANUARY 2025 | SESSION: 1 | | | | | | | | | DURATION: 3 HOURS | MARKS: 100 | | | | | | | | SECOND OPPORTUNITY: EXAMINATION QUESTION PAPER **EXAMINER:** MR. ANDREW ROUX MODERATOR: DR. DISMAS NTIRAMPEBA #### INSTRUCTIONS - 1. Answer all questions on the separate answer sheet. - 2. Please write neatly and legibly. - 3. Do not use the left side margin of the exam paper. This must be allowed for the examiner. - 4. No books, notes and other additional aids are allowed. - 5. Mark all answers clearly with their respective question numbers. #### PERMISSIBLE MATERIALS: 1. Non-Programmable Calculator #### **ATTACHEMENTS** - 1. Statistical Formulae Sheet - 2. Standard Normal Probability Distribution Table - 3. 1 x A4 Graph Sheet This paper consists of 6 pages including this front page #### QUESTION 1 [10x2 = 20] ## Write down the letter corresponding to your choice next to the question number | 1.1. Any characteristic of a population distribution may properly be referred to as a a.) standard deviation. b.) standard score. c.) raw score. d.) standard error. e.) parameter. | |--| | a.) statistics; measures b.) parameters; statistics c.) statistics; variables 1.2. Characteristics of a population are called, while those of a sample, while those of a sample, and d.) statistics; parameters e.) none of these | | 1.3. A population is: a.) a number or measurement collected as a result of observation b.) a subset of a population c.) a characteristic of a population which is measurable d.) a complete set of individuals, objects, or measurements having some common observable characteristics e.) none of these | | 1.4 Your statistics class a.) is a representative sample of your college student body b.) is not a representative sample of your college student body c.) is not a sample of your college student body d.) none of the above | | 1.5. Inferential statistics a.) refers to the process of drawing inferences about the sample based on the characteristics of the population b.) is the same as descriptive statistics c.) refers to the statistical methods used to draw inferences about a population based on sample information d.) is the same as a census e.) none of the above answers is correct. | | 1.6 Which of the following is NOT a valid reason for collecting a comple instead | - **1.6**. Which of the following is NOT a valid reason for selecting a sample instead of studying the whole population? - a.) The cost of studying an entire population may be too high. - b.) The population may be at least partially destroyed in the process of studying it. - c.) Studying the entire population might be too time consuming. - d.) It is very interesting to conduct sampling. - **1.7.** Suppose we sample by selecting every fifth invoice in a file after randomly obtaining a starting point. What type of sampling is this? - a.) simple random sampling - b.) cluster random sampling - c.) stratified random sampling - d.) systematic random sampling - e.) None of the above - **1.8**. The _____ sampling method typically will require a larger sample size than other methods; however, the close proximity of sample elements can be cost-effective. - a.) simple random - b.) cluster - c.) stratified - d.) systematic - e.) None of the above. - **1.9**. All possible samples of size *n* are selected from a population, and the mean of each sample is determined. The mean of the sample means is - a.) Exactly the same as the population mean - b.) Larger than the population mean - c.) Smaller than the population mean - d.) Cannot be estimated in advance - e.) None of the above - **1.10**. The ______ tells us that the distribution of all possible sample means will be approximately normal for reasonably large sample sizes. - a.) Central Limit Theorem - b.) Mean Limit Theorem - c.) Combination Theorem - d.) Estimation Theorem - e.) None of the above is correct. #### QUESTION 2 [18] The data below represents the annual rainfall (mm) recorded over forty farms across Namibia in 2018, | 250 | 600 | 553 | 295 | 210 | 389 | 400 | 625 | 850 | 723 | |-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | 157 | 423 | 300 | 239 | 487 | 535 | 762 | 532 | 672 | 678 | | 522 | 435 | 628 | 456 | 239 | 863 | 764 | 433 | 677 | 245 | | 342 | 296 | 456 | 586 | 349 | 421 | 568 | 825 | 924 | 598 | 2.1) Summarize the data in a frequency distribution with classes of equal width 2.2)Compile a relative frequency distribution distribution - (2) - Compile a Relative Cumulative "less-tan" and a Relative Cumulative "more-2.3)than frequency distribution (2 + 2) Use the data obtained in 2.1 to draw a histogram and a polygon (5 + 3 = 8)2.4) #### QUESTION 3 [19] During one month, time records shows the following results for the number of production workers absent per day: | 13 | 14 | 9 | 17 | 21 | 10 | 15 | 22 | 19 | 13 | |----|----|----|----|----|----|----|----|----|----| | 22 | 13 | 19 | 23 | 17 | 21 | 10 | 9 | 20 | 18 | For the distribution above, calculate and interpret the: - 3.1)Range 3.2)Mode (1)3.3)Median (3)3.4)Arithmetic mean (3)3.5)Variance (5)(2)3.6)Standard deviation - 3.7) Coefficient of variation #### QUESTION 4 [15] The Office of The Bursar at The Namibia University of Science and Technology (NUST) revealed some information regarding method of payment for a group of 2022 students at different levels of study. | Bursary | Loan | Self | Totals | |---------|----------------|---------------------------|--| | 12 | 379 | 727 | 1118 | | 39 | 106 | 642 | 787 | | 48 | 20 | 57 | 95 | | 69 | 505 | 1426 | 2000 | | | 12
39
48 | 12 379
39 106
48 20 | 12 379 727 39 106 642 48 20 57 | 4.1)Find the probability of randomly selecting one student from this group who pays for him/herself? (2) - 4.2) Find the probability of randomly selecting one student from this group who has a Diploma or a Degree? (4) - 4.3) Find the probability of randomly selecting one student from this group who has a Bursary or Degree? (4) - 4.4) What is the chance of randomly selecting one student with a degree, given that this student has a loan? (5) #### QUESTION 5 [28] - 5.1) In a multiple choice question, there are five different answers, of which only one is correct. The probability that a student will know the correct answer is 0.6. If a student does not know the answer, he guesses an answer at random. - 5.1.1) What is the probability that the student gives the correct answer? (4) - 5.1.2) If the student gives the correct answer, what is the probability that he guessed? (6) - 5.2) A company's sales for the years 2014 to 2022 were as follows: (x N\$ 10 000) | Year | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | |-------|------|------|------|------|------|------|------|------|------| | Sales | 324 | 296 | 310 | 305 | 295 | 347 | 348 | 364 | 370 | 5,2.1) Plot the time series data - (4) - 5.2.2) Derive, by using the method of least squares, an equation of linear trend for the sales of the company. (Use sequential numbering with x = 1 in 2012) (8) - 5.2.3) Compute trend values for the years 2012 and 2025 (6) #### **FORMULAE SHEET** $$\text{Mean } \bar{x} = \frac{\sum xf}{n} \text{ ; Mode} = L + \frac{c(f_m - f_{m-1})}{2 \times f_m - f_{m-1} - f_{m+1}}$$; Median= $L + \frac{c(0.5n - CF)}{f_{me}}$ $$\beta = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2}$$; $$\alpha = \frac{\sum y - \beta(\sum x)}{n}$$ $$\beta = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2} \quad ; \qquad \alpha = \frac{\sum y - \beta(\sum x)}{n}$$ $$Ip(L) \frac{\sum P_i \times Q_b}{\sum P_b \times Q_b} \times 100 \qquad ; \qquad Ip(P) = \frac{\sum P_i \times Q_i}{\sum P_b \times Q_i} \times 100 \qquad ;$$ $$Ip = \frac{\sum p_1}{\sum p_0} \times 100\%$$ $$Var(x) = \frac{\sum X^2 - n(\overline{x})^2}{n-1} \qquad ; Std \ Dev, \ s = \sqrt{Var(x)} \qquad ;$$ $$CV = \frac{Std \ Dev}{\overline{x}} \times 100 \qquad ;$$ $$Var(x) = \frac{\sum X^{2} - n(\overline{x})^{2}}{n-1} ; Std Dev, s = \sqrt{Var(x)} ;$$ $$CV = \frac{Std Dev}{\overline{x}} x 100 ;$$ #### Z - Table The table shows cumulative probabilities for the standard normal curve. # Cumulative probabilities for NEGATIVE z-values are shown first. SCROLL DOWN to the 2^{nd} page for POSITIVE z | Z | .00 | .01 | .02 | .03 | .04 | .05 | .06 | .07 | .08 | .09 | |------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------| | -3.4 | .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0002 | | -3.3 | .0005 | .0005 | .0005 | .0004 | .0004 | .0004 | .0004 | .0004 | .0004 | .0003 | | -3.2 | .0007 | .0007 | .0006 | .0006 | .0006 | .0006 | .0006 | .0005 | .0005 | .0005 | | -3.1 | .0010 | .0009 | .0009 | .0009 | .0008 | .0008 | .0008 | .0008 | .0007 | .0007 | | -3.0 | .0013 | .0013 | .0013 | .0012 | .0012 | .0011 | .0011 | .0011 | .0010 | .0010 | | -2.9 | .0019 | .0018 | .0018 | .0017 | .0016 | .0016 | .0015 | .0015 | .0014 | .0014 | | -2.8 | .0026 | .0025 | .0024 | .0023 | .0023 | .0022 | .0021 | .0021 | .0020 | .0019 | | -2.7 | .0035 | .0034 | .0033 | .0032 | .0031 | .0030 | .0029 | .0028 | .0027 | .0026 | | -2.6 | .0047 | .0045 | .0044 | .0043 | .0041 | .0040 | .0039 | .0038 | .0037 | .0036 | | -2.5 | .0062 | .0060 | .0059 | .0057 | .0055 | .0054 | .0052 | .0051 | .0049 | .0048 | | -2.4 | .0082 | .0080 | .0078 | .0075 | .0073 | .0071 | .0069 | .0068 | .0066 | .0064 | | -2.3 | .0107 | .0104 | .0102 | .0099 | .0096 | .0094 | .0091 | .0089 | .0087 | .0084 | | -2.2 | .0139 | .0136 | .0132 | .0129 | .0125 | .0122 | .0119 | .0116 | .0113 | .0110 | | -2.1 | .0179 | .0174 | .0170 | .0166 | .0162 | .0158 | .0154 | .0150 | .0146 | .0143 | | -2.0 | .0228 | .0222 | .02:17 | .0212 | .0207 | .0202 | .0197 | .0192 | .0188 | .0183 | | -1.9 | .0287 | .0281 | .0274 | .0268 | .0262 | .0256 | .0250 | .0244 | .0239 | .0233 | | -1.8 | .0359 | .0351 | .0344 | .0336 | .0329 | .0322 | .0314 | .0307 | .0301 | .0294 | | -1.7 | .0446 | .0436 | .0427 | .0418 | .0409 | .0401 | .0392 | .0384 | .0375 | .0367 | | -1.6 | .0548 | .0537 | .0526 | .0516 | .0505 | .0495 | .0485 | .0475 | .0465 | .0455 | | -1.5 | .0668 | .0655 | .0643 | .0630 | .0618 | .0606 | .0594 | .0582 | .0571 | .0559 | | -1.4 | .0808 | .0793 | .0778 | .0764 | .0749 | .0735 | .0721 | .0708 | .0694 | .0681 | | -1.3 | .0968 | .0951 | .0934 | .0918 | .0901 | .0885 | .0869 | .0853 | .0838 | .0823 | | -1.2 | .1151 | .1131 | .1112 | .1093 | .1075 | .1056 | .1038 | .1020 | .1003 | .0985 | | -1.1 | .1357 | .1335 | .1314 | .1292 | .1271 | .1251 | .1230 | .1210 | .1190 | .1170 | | -1.0 | .1587 | .1562 | .1539 | .1515 | .1492 | .1469 | .1446 | .1423 | .1401 | .1379 | | -0.9 | .1841 | .1814 | .1788 | .1762 | .1736 | .1711 | .1685 | .1660 | .1635 | .1611 | | -0.8 | .2119 | .2090 | .2061 | .2033 | .2005 | .1977 | .1949 | .1922 | .1894 | .1867 | | -0.7 | .2420 | .2389 | .2358 | .2327 | .2296 | .2266 | .2236 | .2206 | .2177 | .2148 | | -0.6 | .2743 | .2709 | .2676 | .2643 | .2611 | .2578 | .2546 | .2514 | .2483 | .2451 | | -0.5 | .3085 | .3050 | .3015 | .2981 | .2946 | .2912 | .2877 | .2843 | .2810 | .2776 | | -0.4 | .3446 | .3409 | .3372 | .3336 | .3300 | .3264 | .3228 | .3192 | .3156 | .3121 | | -0.3 | .3821 | .3783 | .3745 | .3707 | .3669 | .3632 | .3594 | .3557 | .3520 | .3483 | | -0.2 | .4207 | .4168 | .4129 | .4090 | .4052 | .4013 | .3974 | .3936 | .3897 | .3859 | | -0.1 | .4602 | .4562 | .4522 | .4483 | .4443 | .4404 | .4364 | .4325 | .4286 | .4247 | | 0.0 | .5000 | .4960 | .4920 | .4880 | .4840 | .4801 | .4761 | .4721 | .4681 | .4641 | ### Cumulative probabilities for POSITIVE z-values are shown below. | Z | .00 | .01 | .02 | .03 | .04 | .05 | .06 | .07 | .08 | .09 | |-----|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------| | 0.0 | .5000 | .5040 | .5080 | .5120 | .5160 | .5199 | .5239 | .5279 | .5319 | .5359 | | 0.1 | .5398 | .5438 | .5478 | .5517 | .5557 | .5596 | .5636 | .5675 | .5714 | .5753 | | 0.2 | .5793 | .5832 | .5871 | .5910 | .5948 | .5987 | .6026 | .6064 | .6103 | .6141 | | 0.3 | .6179 | .6217 | .6255 | .6293 | .6331 | .6368 | .6406 | .6443 | .6480 | .6517 | | 0.4 | .6554 | .6591 | .6628 | .6664 | .6700 | .6736 | .6772 | .6808 | .6844 | .6879 | | 0.5 | .6915 | .6950 | .6985 | .7019 | .7054 | .7088 | .7123 | .7157 | .7190 | .7224 | | 0.6 | .7257 | .7291 | .7324 | .7357 | .7389 | .7422 | .7454 | .7486 | .7517 | .7549 | | 0.7 | .7580 | .7611 | .7642 | .7673 | .7704 | .7734 | .7764 | .7794 | .7823 | .7852 | | 0.8 | .7881 | .7910 | .7939 | .7967 | .7995 | .8023 | .8051 | .8078 | .8106 | .8133 | | 0.9 | .8159 | .8186 | .8212 | .8238 | .8264 | .8289 | .8315 | .8340 | .8365 | .8389 | | 1.0 | .8413 | .8438 | .8461 | .8485 | .8508 | .8531 | .8554 | .8577 | .8599 | .8621 | | 1.1 | .8643 | .8665 | .8686 | .8708 | .8729 | .8749 | .8770 | .8790 | .8810 | .8830 | | 1.2 | .8849 | .8869 | .8888. | .8907 | .8925 | .8944 | .8962 | .8980 | .8997 | .9015 | | 1.3 | .9032 | .9049 | .9066 | .9082 | .9099 | .9115 | .9131 | .9147 | .9162 | .9177 | | 1.4 | .9192 | .9207 | .9222 | .9236 | .9251 | .9265 | .9279 | .9292 | .9306 | .9319 | | 1.5 | .9332 | .9345 | .9357 | .9370 | .9382 | .9394 | .9406 | .9418 | .9429 | .9441 | | 1.6 | .9452 | .9463 | .9474 | .9484 | .9495 | .9505 | .9515 | .9525 | .9535 | .9545 | | 1.7 | .9554 | .9564 | .9573 | .9582 | .9591 | .9599 | .9608 | .9616 | .9625 | .9633 | | 1.8 | .9641 | .9649 | .9656 | .9664 | .9671 | .9678 | .9686 | .9693 | .9699 | .9706 | | 1.9 | .9713 | .9719 | .9726 | .9732 | .9738 | .9744 | .9750 | .9756 | .9761 | .9767 | | 2.0 | .9772 | .9778 | .9783 | .9788 | .9793 | .9798 | .9803 | .9808 | .9812 | .9817 | | 2.1 | .9821 | .9826 | .9830 | .9834 | .9838 | .9842 | .9846 | .9850 | .9854 | .9857 | | 2.2 | .9861 | .9864 | .9868 | .9871 | .9875 | .9878 | .9881 | .9884 | .9887 | .9890 | | 2.3 | .9893 | .9896 | .9898 | .9901 | .9904 | .9906 | .9909 | .9911 | .9913 | .9916 | | 2.4 | .9918 | .9920 | .9922 | .9925 | .9927 | .9929 | .9931 | .9932 | .9934 | .9936 | | 2.5 | .9938 | .9940 | .9941 | .9943 | .9945 | .9946 | .9948 | .9949 | .9951 | .9952 | | 2.6 | .9953 | .9955 | .9956 | .9957 | .9959 | .9960 | .9961 | .9962 | .9963 | .9964 | | 2.7 | .9965 | .9966 | .9967 | .9968 | .9969 | .9970 | .9971 | .9972 | .9973 | .9974 | | 2.8 | .9974 | .9975 | .9976 | .9977 | .9977 | .9978 | .9979 | .9979 | .9980 | .9981 | | 2.9 | .9981 | .9982 | .9982 | .9983 | .9984 | .9984 | .9985 | .9985 | .9986 | .9986 | | 3.0 | .9987 | .9987 | .9987 | .9988 | .9988 | .9989 | .9989 | .9989 | .9990 | .9990 | | 3.1 | .9990 | .9991 | .9991 | .9991 | .9992 | .9992 | .9992 | .9992 | .9993 | .9993 | | 3.2 | .9993 | .9993 | .9994 | .9994 | .9994 | .9994 | .9994 | .9995 | .9995 | .9995 | | 3.3 | .9995 | .9995 | .9995 | .9996 | .9996 | .9996 | .9996 | .9996 | .9996 | .9997 | | 3.4 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9998 | .