

-

DAMIBIA UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF MANAGEMENT SCIENCES

DEPARTMENT OF ACCOUNTING, ECONOMICS AND FINANCE

QUALIFICATION: BACHELOR OF ECONOMICS					
QUALIFICATION CODE: 12BECO	LEVEL: 7				
COURSE CODE: MEC712S	COURSE NAME: MATHEMATICAL ECONOMICS				
SESSION: NOVEMBER 2023	PAPER: THEORY				
DURATION: 3 HOURS	MARKS: 100				

	FIRST OPPORTUNITY EXAMINATION QUESTION PAPER
EXAMINER(S)	
	MR EDEN TATE SHIPANGA
MODERATOR:	DR R. KAMATI

	INSTRUCTIONS
1.	Answer ALL the questions.
2.	Write clearly and neatly.
3.	Number the answers clearly.

PERMISSIBLE MATERIALS

- 1. PEN,
- 2. PENCIL
- 3. CALCULATOR

THIS QUESTION PAPER CONSISTS OF 2 PAGES (Including this front page)

Question 1 [25 Marks]

- 1. Solve the following system of equations using Cramer's rule
 - a)

e

b)

 $2X_{2}^{1} + 5X_{3} = 5$ $2X_{1} - 3X_{3} = 7$ $7X_{1} - 3X_{2} - 3X_{3} = 7$ $2X_{1} + 4X_{2} + 3X_{3} = 0$ $-2X_{2} - X_{3} = 2$

 $8X_1 - X_2 = 16$

2. Use Jacobian determinants to test the existence of functional dependence between the paired functions.

a)

$$y_1 = 3x_1^2 + x_2$$

 $y_2 = 9x_1^4 + 6x_1^2(x_2 + 4) + x_2(x_2 + 8) + 12$ (5)
b)
 $y_1 = 3x_1^2 + 2x_2^2$
 $y_2 = 5x_1 + 1$ (5)

Question 2 [25 Marks]

In a three–industry economy, it is known that industry I uses 20 cents of its own product, 10 cents of commodity III and 60 cents of commodity II to produce a dollar's worth of commodity I industry II uses 10 cents of its own product, 30 cents of commodity II and 50 cents of commodity I to produce a dollar's worth of commodity II while industry III uses none of its own product and commodity I, but uses 20 cents of commodity II in producing a dollar's worth of commodity III; and the open sector demands N\$ 1,000 billion of commodity I, N\$ 2,000 billion of commodity II and 500 billion of commodity III

a) '	Write out the	input matrix,	and the	specific	input matrix	equation for	or this economy.	(5)
------	---------------	---------------	---------	----------	--------------	--------------	------------------	-----

- b) Find the solution output levels? (15)
- c) Work out the required primary input for this economy (5)

Question 3 [25 Marks]

- 1. Optimise the following function, using a) Cramer's rule for the first order condition and b) the Hessian for the second-order condition: $y = 5x_1^2 - 7x_1 - x_1x_2 + 8x_2^2 - 6x_2 + 4x_2x_3 + 6x_3^2 + 4x_3 - 5x_1x_3$ (10)
- Maximize utility u = xy + x, subject to the budget constraint 6x + 2y = 110 by a) finding the critical values x

 x
 , y
 and λ
 , b) use the Hessian bordered.
 (15)

Question 4 [25 Marks]

Maximise profits using Kuhn-Tucker conditions, $\pi = 54x - x^2 + 76y - 3y^2 - 12$ subject to the production constraint $x + y \le 35$ (25)

TOTAL MARKS: 100

(15)