חAmIBIA UПIVERSITY
OF SCIEПCE AПD TECHחOLOGY

FACULTY OF MANAGEMENT SCIENCES

DEPARTMENT OF ACCOUNTING, ECONOMICS AND FINANCE

QUALIFICATION: BACHELOR OF ECONOMICS	
QUALIFICATION CODE: 12BECO	LEVEL: 7
COURSE CODE: MEC712S	COURSE NAME: MATHEMATICAL ECONOMICS
SESSION: NOVEMBER 2023	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	
	MR EDEN TATE SHIPANGA
MODERATOR:	DR R. KAMATI

INSTRUCTIONS

1. Answer ALL the questions.
2. Write clearly and neatly.
3. Number the answers clearly.

PERMISSIBLE MATERIALS

1. PEN,
2. PENCIL
3. CALCULATOR

Question 1 [25 Marks]

1. Solve the following system of equations using Cramer's rule
a)

$$
\begin{align*}
& 8 X_{1}-X_{2}=16 \tag{15}\\
& 2 X_{2}+5 X_{3}=5 \\
& 2 X_{1}-3 X_{3}=7
\end{align*}
$$

b)

$$
\begin{gathered}
7 X_{1}-3 X_{2}-3 X_{3}=7 \\
2 X_{1}+4 X_{2}+3 X_{3}=0 \\
-2 X_{2}-X_{3}=2
\end{gathered}
$$

2. Use Jacobian determinants to test the existence of functional dependence between the paired functions.
a)

$$
\begin{align*}
& y_{1}=3 x_{1}^{2}+x_{2} \\
& y_{2}=9 x_{1}^{4}+6 x_{1}^{2}\left(x_{2}+4\right)+x_{2}\left(x_{2}+8\right)+12 \tag{5}
\end{align*}
$$

b)

$$
\begin{align*}
& y_{1}=3 x_{1}^{2}+2 x_{2}^{2} \\
& y_{2}=5 x_{1}+1 \tag{5}
\end{align*}
$$

Question 2 [25 Marks]

In a three-industry economy, it is known that industry I uses 20 cents of its own product, 10 cents of commodity III and 60 cents of commodity II to produce a dollar's worth of commodity I industry II uses 10 cents of its own product , 30 cents of commodity III and 50 cents of commodity I to produce a dollar's worth of commodity II while industry III uses none of its own product and commodity I, but uses 20 cents of commodity II in producing a dollar's worth of commodity III; and the open sector demands N\$ 1,000 billion of commodity I, N\$ 2,000 billion of commodity II and 500 billion of commodity III
a) Write out the input matrix, and the specific input matrix equation for this economy.
b) Find the solution output levels?
c) Work out the required primary input for this economy

Question 3 [25 Marks]

1. Optimise the following function, using a) Cramer's rule for the first order condition and b) the Hessian for the second-order condition:
$y=5 x_{1}^{2}-7 x_{1}-x_{1} x_{2}+8 x_{2}^{2}-6 x_{2}+4 x_{2} x_{3}+6 x_{3}^{2}+4 x_{3}-5 x_{1} x_{3}$
2. Maximize utility $u=x y+x$, subject to the budget constraint $6 x+2 y=110$ by a) finding the critical values \bar{x}, \bar{y} and $\bar{\lambda}, b$) use the Hessian bordered.

Question 4 [25 Marks]

Maximise profits using Kuhn-Tucker conditions, $\pi=54 x-x^{2}+76 y-3 y^{2}-12$ subject to the production constraint $x+y \leq 35$

