חAmIBIA UחIVERSITY
OF SCIEПCE AПD TECHПOLOGY

FACULTY OF MANAGEMENT SCIENCES

DEPARTMENT OF ACCOUNTING, ECONOMICS AND FINANCE

QUALIFICATION: BACHELOR OF ECONOMICS	
QUALIFICATION CODE: 12BECO	LEVEL: 7
COURSE CODE: MEC712S	COURSE NAME: MATHEMATICAL ECONOMICS
SESSION: JANUARY 2024	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

SECOND OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	
	MR EDEN TATE SHIPANGA
MODERATOR:	DR R. KAMATI

INSTRUCTIONS

4. Answer ALL the questions.
5. Write clearly and neatly.
6. Number the answers clearly.

PERMISSIBLE MATERIALS

4. PEN,
5. PENCIL
6. CALCULATOR

THIS QUESTION PAPER CONSISTS OF 2 PAGES (Including this front page)

Question 1 [25 Marks]

Consider the following simple one commodity market model:
$Q=b-a P$
$(a, b>0)$
[demand]
$Q=-d+c P$
$(c, d>0)$
[supply]

1. Find the Equilibrium Price P^{*} and Quantity Q^{*} ?
2. Use partial derivative to find the effect of the parameters ($\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d) on the equilibrium quantity? (15)

Question 2 [25 Marks]

Consider the following microeconomic model.

$$
\left.\begin{array}{ll}
Q_{d}=D\left(P, Y_{0}\right) & {\left[D_{P}<0 ; D_{Y_{0}}>0\right]} \\
Q_{s}=D\left(P, T_{0}\right) & {\left[S_{P}>0 ;\right.}
\end{array} S_{T_{0}}<0\right] ~ \$
$$

Where Y_{0} is income and T_{0} is the tax on the commodity.
Analyse the comparative statics of the model to find the effect of change in Income and Tax on the equilibrium Q and P ?

Question 3 [25 Marks]

Give the input matrix and the final demand vector

$$
A=\left[\begin{array}{ccc}
0.05 & 0.25 & 0.34 \\
0.33 & 0.10 & 0.12 \\
0.19 & 0.38 & 0
\end{array}\right] \quad d=\left[\begin{array}{c}
1800 \\
200 \\
900
\end{array}\right]
$$

(a) Explain the economic meaning of the elements $0.33,0$ and 200
(b) Explain the economic meaning (if any) of the third column sum
(c) Find the solution output levels by Cramer's rule

Question 4 [25 Marks]

1. Optimise the following function, a) find the critical value for the first order condition and b) the high-order Hessian:

$$
\begin{equation*}
y=4 x_{1}^{2}-7 x_{1}-x_{1} x_{2}+8 x_{2}^{2}-5 x_{2}+2 x_{2} x_{3}+4 x_{3}^{2}+2 x_{3}-4 x_{1} x_{3} \tag{15}
\end{equation*}
$$

2. Use discriminants to determine whether each of the following quadratic function is positive or negative definite:

$$
\begin{equation*}
y=5 x_{1}^{2}-6 x_{1} x_{2}+3 x_{2}^{2}-2 x_{2} x_{3}+8 x_{3}^{2}-3 x_{1} x_{3} \tag{10}
\end{equation*}
$$

