ПAmIBIA UMIVERSITY
13 Jackson Kaujeua Stree
Private Bag 13388
Windhoek
NAMIBIA
Faculty of Health, Natural
Resources and Applied
Sciences
School of Natural and Applied
Sciences
Department of Mathematics, Statistics and Actuarial Science

QUALIFICATION : BACHELOR of SCIENCE	
QUALIFICATION CODE: 07BOSC	LEVEL: 6
COURSE: CALCULUS 2	COURSE CODE: CLS601S
DATE: NOVEMBER 2023	SESSION: 1
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION: QUESTION PAPER

EXAMINER:
MODERATOR:

Mr. Benson E Obabueki
Dr. David liyambo

INSTRUCTIONS (add other relevant instructions):

1. Answer all questions on the separate answer sheet.
2. Please write neatly and legibly.
3. Do not use the left side margin of the answer script. This must be allowed for the examiner.
4. No books, notes and other additional aids are allowed.
5. Mark all answers clearly with their respective question numbers.
6. Show all your working/calculation steps.

PERMISSIBLE MATERIALS:

1. Non-Programmable Calculator

ATTACHEMENTS

None

This paper consists of 2 pages excluding this front page

Question 1 (33 marks)

Determine each of the following indefinite integrals using only the indicated methods. Show all the working steps.
1.1 $\int\left(5 x^{2}+2\right) \sin 2 x d x$, by parts.
1.2 $\int \frac{2 x+1}{x\left(x^{2}-1\right)} d x$, by partial fractions.
1.3 $\int \sqrt{\sin 2 x} \cos 2 x d x$, by substitution.
$1.4 \int \frac{3}{\sqrt{16-4 x^{2}}} d x$, by trigonometric substitution.

Question 2 (21 marks)

2.1 Consider the function $f(x)=x^{3}+2 x^{2}+x+1$. Find the quadratic interpolation polynomial $P_{2}(x)$ that interpolates f at the nodes $x_{0}=-1, x_{1}=0$ and $x_{2}=1$.
2.2 Determine the minimum value of n that will make the Simpson's rule approximation of $\int_{0}^{3}\left(x^{6}+x^{5}+2 x+8\right) d x$ correct to within an error of 0.001 .

Question 3 (35 marks)

3.1 Determine the area of the region enclosed by the graphs of the functions $f(x)=x^{2}-4$ and $g(x)=4-x^{2}$.
3.2 Determine the volume of the solid generated when a plane figure bounded by $y=5 \cos 2 x$, the x-axis, and the ordinates $x=0$ and $x=\frac{\pi}{4}$, rotates about the x-axis through a complete revolution.
3.3 A plane figure is enclosed by the parabola $y^{2}=4 x$ and the line $y=2 x$. Determine 3.3.1 the position of the centroid of the plane figure.
3.3.2 the centre of gravity of the solid formed when the plane figure rotates completely about the x-axis.

Question 4 (11 marks)

4.1 Express $(-4,3)$ in polar coordinate form.
(6)
4.2 Convert $r=\sin 2 \theta$ to rectangular coordinates.
(5)

