

Resources and Applied Sciences

School of Natural and Applied Sciences

Department of Biology, **Chemistry and Physics**

 13 Jackson Kaujeua Street
 T: +264 61 207 2012

 Private Bag 13388
 F: +264 61 207 9012

 Windhoek
 E: dbcp@nust.na

 NAMIBIA
 W: www.nust.na

QUALIFICATION : BACHELOR OF SCIENCE	
QUALIFICATION CODE: 07BOSC	LEVEL: 6
COURSE: ELECTRICAL CIRCUITS AND ELECTRONICS	COURSE CODE: ECE602S
DATE: NOVEMBER 2023	SESSION: 1
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY: EXAMINATION QUESTION PAPER

EXAMINER:	PROF MUNAWAR KARIM	
MODERATOR:	DR VAINO INDONGO	

INSTRUCTIONS

- 1. Answer all questions on the separate answer sheet.
- 2. Please write neatly and legibly.
- 3. Do not use the left side margin of the exam paper. This must be allowed for the examiner.
- 4. No books, notes and other additional aids are allowed.
- 5. Mark all answers clearly with their respective question numbers.

PERMISSIBLE MATERIAL:

Non-Programmable Calculator

This paper consists of 4 pages including this front page

- 1) A cell of emf \mathcal{E} has internal resistance r.
 - (a) Using a voltmeter, ammeter, variable resistor and wires set up an experiment to measure *r*. Draw a circuit diagram. (10)

- (b) If current *I* flows in the circuit, and *V* is the potential across the cell show that $\mathcal{E} = V + Ir$. Rewrite this as $V = -rI + \mathcal{E}$, which looks like the equation of a straight line with slope *r* and intercept \mathcal{E} . (10)
- (c) In an experiment the data fit the equation V = -1.11I + 1.6. What is the value of r? (10)

The input V_{in} (V) vs t(s) is shown below:

(3) Draw a circuit for a RC-bandpass filter.	(10)
(a) Calculate R and C-values when the low-frequency cut-off value	62 U.S.22
is 3000 Hz.	(10)
(b) Calculate the R and C values when the high frequency cut-off va	lue
is 10,000 Hz.	(10)
(c) Draw a graph of $\ln v_0/v_i$ vs $\ln(f)$.	(10)

a e

END OF QUESTION PAPER
