Faculty of Health, Natural **Resources and Applied Sciences** 

School of Natural and Applied Sciences

Department of Mathematics, Statistics and Actuarial Science 13 Jackson Kaujeua Street T: +264 61 207 2913 Private Bag 13388 E: msas@nust.na Windhoek NAMIBIA

W: www.nust.na

| QUALIFICATION: Bachelor of Science in Applied Mathematics |                      |
|-----------------------------------------------------------|----------------------|
| QUALIFICATION CODE: 07BAMS                                | LEVEL: 7             |
| COURSE: MECHANICS                                         | COURSE CODE: MCS702S |
| DATE: JANUARY 2025                                        | SESSION: 1           |
| DURATION: 3 HOURS                                         | MARKS: 81            |

## 2<sup>nd</sup> OPPORTUNITY EXAMINATION: QUESTION PAPER

EXAMINER:

Ms K. DAVID

**MODERATOR: Prof D. MAKINDE** 

## **INSTRUCTIONS:**

- 1. Answer **ALL** questions on the separate answer sheet.
- 2. Please write neatly and legibly.
- 3. Do not use the left side margin of the exam paper. This must be allowed for the
- 4. No books, notes and other additional aids are allowed.
- 5. Mark all answers clearly with their respective question numbers.

## **PERMISSIBLE MATERIALS:**

1. Non-Programmable Calculator

This paper consists of 4 pages including this front page.

[4]

- 1.1. Let A = 2i 3j + 4k and B = -i + 2j + 5k be two vectors in 3D space.
  - a) Find the angle between Vector A and B.
  - b) Find the cross product between vector A and B [4]
  - c) Find the unit vector in the direction of vector B [3]
- 1.2. A boat is moving in a north-westerly direction at a speed of  $60 \, m/s$ . Find the x-component and the y-component of the boat. (Assume north is along the positive y-axis and west is along the negative x-axis). [4]
- 1.3. If  $r(t) = a\cos\omega t + b\sin\omega t$ , where a and b are any constant non-collinear vectors and  $\omega$  is a constant scalar, prove that  $r(t) \times \frac{dr}{dt} = w(a \times b)$ . Hint: "  $\times$  " implies the cross product. [5]

Question 2

[6 marks]

The graph below shows the velocity (in m/s) of a car plotted as a function of time t.



Based on the graph, calculate:

- (a) The distance travelled by the car in the first 4 seconds.
- (b) The distance travelled by the car in the first 8 seconds. [2]
- (c) The distance travelled by the car in the first 12 seconds. [2]

[2]

Question 3 [8 marks]

A particle starts from rest and moves along the x-axis. For the first  $8.0\,s$  of its motion, the horizontal acceleration of the particle is given by  $a_x=(4.0\,m/s^3)t$  where the +x-direction is to the right.

a) What is the position of the particle along the x-axis at t = 8.0? [4]

b) What is the speed of the particle when it is 250 m away from the origin? [4]

Question 4: [10 marks]

A web designer creates an animation in which a dot on a computer screen has a position of  $\vec{r} = [4.0cm + (2.5cm/s^2)t^2]i + (5.0cm/s^2)tj$ .

- a) Find the magnitude and the direction of the dot's average velocity between t=0s and t=2.0s. [4]
- b) Find the magnitude and direction of the instantaneous velocity t=0s, t=1.0s and t=2.0s.

Question 5 [11 marks]

A projectile is launched from the ground with an initial velocity  $v_0$  at an angle  $\theta$  with the horizontal. Assuming that the only force acting on the projectile after launch is gravity (with acceleration g), derive the equations for:

- a) the horizontal displacement (range) x(t) as a function of time t. [3]
- b) the vertical displacement y(t) as a function of time t. [3]
- c) the total time of flight T. [5]

Question 6 [10 marks]

Three workers are attempting to move a large crate across a rough floor by pulling on it using ropes. The forces applied by the workers are represented by the following vectors:

Force 1: 150N at an angle of  $30^{\circ}$  above the positive x-axis.

Force 2: 200N along the negative x-axis.

Force 3: 250N at an angle of  $45^{\circ}$  above the negative x-axis.

- a) Draw a sketch of these force vectors on the same x-y plane. [3]
- b) Calculate the x- and y-components of each of the three forces. [6]
- Use the components to find the magnitude and direction of the resultant force acting on the crate.

Question 7 [10 marks]

7.1. A 3000 N Tesla Model S is moving along the +y-direction and suddenly applies its brakes for an emergency stop. The y-component of the net force acting on it is –2000 N. What is the car's acceleration? [4]

7.2. A student pushes a soda can with mass 0.60 kg to the left along a smooth, flat table. The can leaves her hand moving at 3.5 m/s, then gradually slows down due to a constant horizontal friction force exerted on it by the table. The can slides for 1.5 m before coming to a stop. What are the magnitude and direction of the friction force acting on the can?

Question 7 [6 marks]

A 1500-kg car travels 50 meters along a horizontal road, during which a total work of 40 000 J is done on it by an external force (ignoring friction). The car initially had a velocity of  $2 \, m/s$  before the work was applied. Using the work-energy theorem, determine the car's final velocity. [6]

**END OF QUESTION PAPER**