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Problem 1: [27 Marks] 
1-1. Let X -f 0. Give the definition of the following concepts: 
1-1-1. A a-algebra on X and a a-algebra generated by a family C of subsets of X. 
1-1-2. A Borel a-algebra on X. 
1-1-3. A measurable space on X. 
1-1-4. A measure on X. 

[3+2] 
[3] 
[l] 
[3] 

1-1-5. A measure space on X. [l] 
1-2. Let EC JR a non-empty set. Show that F = {0, E, EC, JR} is the a-algebra of subsets of JR generated 
by {E}. [9] 
1-3. Let X = {l, 2, 3, 4} and consider C = { {1}, {2, 3}} C P(X). Determine a(C) the a-algebra generated 
by C. [5] 

Problem 2: [35 Marks] 
Let (X, II · II) be a normed space. 
2-1. Assume that X is a Banach space. 
Show that any absolutely summable series is summable. [6] 
2-2. Now we assume that X is a normed space in which any absolutely summable series is summable. 
2-2-1. Let {xn} be a Cauchy sequence in X. Show that if {xn} has a convergent subsequence {xnk}, {xn} 
converges to the same limit. [6] 
2-2-2. Show that we can construct a subsequence { X,p(n)} such that [6] 

1 
Vk E N, llx,p(k) - X,p(k-1) II 2k-l 

and show that 
n 

X,p(n) = I)x<p(k) - X,p(k-1)) + X,p(O), for any n 2: l. 
k=l 

2-2-3. Deduce from question 2-2-2 that the sequence { X,p(n)} converges. 
2-2-4. Conclude that { Xn} converges and therefore X is a Banach space. 
2-3. What is the general rule that you can establish from the main results obtained above. 

Problem 3: [38 Marks] 

[6] 

[6] 
[3] 
[2] 

3-1. Consider (X, II· lloo,1), where X = C1[0, l] and 1111100 ,1 = sup IJ(x)I + sup IJ'(x)I and also consider 

(Y, II· lloo), where Y = C[O, l]. 
xE[0,l] xE[0,l] 

3-1-1. Show that T = ! : X Y is a bounded linear operator. [7] 

3-1-2. Show that T = d~: D(T) £; Y Y is an unbounded linear operator, where D(T) = C1[0, l]. [10] 
(Hint: use Un(x) = sin(mrx)). 

3-2. We recall that £2 or £2 sometimes denoted £2 (N0 ) is the space of sequences defined by 
I 

t' { x (xn)neo, t, lx.12 < oo} • No~ NU (0), and llxlll' (t, Ix.I')' 

Show that the following operators are linear and continuous and compute their norms. 
3-2-1. T1: £2 f2 : T1 ((xn)n;::o) = (xn+i)ne::O· 
3-2-2. T2: £2([0, l]) C: T2 (!) = f0

1 x2 J(x)dx, where: 
l 

L2 ([0, l]) = {!: [0, l] JR: J0
1 IJ(x)J2dx < oo} and 11!11£2 = (J0

1 IJ(x)l2dx) 2 . 

God bless you ! ! ! 
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