

NAMIBIA UNIVERSITY OF SCIENCE AND TECHNOLOGY

Faculty of Health, Natural **Resources and Applied** Sciences

School of Natural and Applied Sciences

Department of Mathematics, Statistics and Actuarial Science

13 Jackson Kaujeua Street T: +264 61 207 2913 Private Bag 13388 Windhoek NAMIBIA

E: msas@nust.na W: www.nust.na

QUALIFICATION : BACHELOR OF SCIENCE IN APPLIED MATHEMATICS HONOURS	
QUALIFICATION CODE: 08BSHM	LEVEL: 8
COURSE: FUNCTIONAL ANALYSIS	COURSE CODE: FAN802S
DATE: NOVEMBER 2023	SESSION: 1
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY: EXAMINATION QUESTION PAPER

EXAMINER:	Dr S.N. NEOSSI-NGUETCHUE
MODERATOR:	Prof F. MASSAMBA

INSTRUCTIONS:

- 1. Answer all questions on the separate answer sheet.
- 2. Please write neatly and legibly.
- 3. Do not use the left side margin of the exam paper. This must be allowed for the examiner.
- 4. No books, notes and other additional aids are allowed.
- 5. Show clearly all the steps used in the calculations.
- 6. Mark all answers clearly with their respective question numbers.

PERMISSIBLE MATERIALS:

1. Non-Programmable Calculator

ATTACHEMENTS

None

This paper consists of 2 pages including this front page

Problem 1: [27 Marks]

1-1. Let $X \neq \emptyset$. Give the definition of the following concepts:

1-1-1. A σ -algebra on X and a σ -algebra generated by a family C of subsets of X. [3+2]1-1-2. A Borel σ -algebra on X. [3]1-1-3. A measurable space on X. [1]1-1-4. A measure on X. [3] 1-1-5. A measure space on X. [1] 1-2. Let $E \subset \mathbb{R}$ a non-empty set. Show that $\mathcal{F} = \{\emptyset, E, E^c, \mathbb{R}\}$ is the σ -algebra of subsets of \mathbb{R} generated

by $\{E\}$. [9] 1-3. Let $X = \{1, 2, 3, 4\}$ and consider $\mathcal{C} = \{\{1\}, \{2, 3\}\} \subset \mathcal{P}(X)$. Determine $\sigma(\mathcal{C})$ the σ -algebra generated

[5]

[6]

[6]

[7]

Problem 2: [35 Marks]

by \mathcal{C} .

Let $(X, \|\cdot\|)$ be a normed space.

2-1. Assume that X is a Banach space.

Show that any absolutely summable series is summable.

2-2. Now we assume that X is a normed space in which any absolutely summable series is summable. **2-2-1.** Let $\{x_n\}$ be a Cauchy sequence in X. Show that if $\{x_n\}$ has a convergent subsequence $\{x_{n_k}\}, \{x_n\}$ converges to the same limit. [6][6]

2-2-2. Show that we can construct a subsequence $\{x_{\varphi(n)}\}$ such that

$$\forall k \in \mathbb{N}, \|x_{\varphi(k)} - x_{\varphi(k-1)}\| \le \frac{1}{2^{k-1}}$$

and show that

$$x_{\varphi(n)} = \sum_{k=1}^{n} (x_{\varphi(k)} - x_{\varphi(k-1)}) + x_{\varphi(0)}, \text{ for any } n \ge 1.$$

2-2-3. Deduce from question **2-2-2** that the sequence $\{x_{\varphi(n)}\}$ converges. [6] **2-2-4.** Conclude that $\{x_n\}$ converges and therefore X is a Banach space. [3][2] 2-3. What is the general rule that you can establish from the main results obtained above.

Problem 3: [38 Marks] **3-1.** Consider $(\mathbf{X}, \|\cdot\|_{\infty,1})$, where $\mathbf{X} = \mathcal{C}^1[0, 1]$ and $\|f\|_{\infty,1} = \sup_{x \in [0,1]} |f(x)| + \sup_{x \in [0,1]} |f'(x)|$ and also consider $(\mathbf{Y}, \|\cdot\|_{\infty})$, where $\mathbf{Y} = \mathcal{C}[0, 1]$. 3-1-1. Show that $T = \frac{d}{dx} : \mathbf{X} \to \mathbf{Y}$ is a bounded linear operator.

3-1-2. Show that $T = \frac{d}{dx}$: $D(T) \subseteq \mathbf{Y} \to \mathbf{Y}$ is an unbounded linear operator, where $D(T) = \mathcal{C}^1[0, 1]$. [10] (Hint: use $u_n(x) = \sin(n\pi x)$).

3-2. We recall that ℓ^2 or ℓ_2 sometimes denoted $\ell^2(\mathbb{N}_0)$ is the space of sequences defined by

$$\ell^{2} = \left\{ x = (x_{n})_{n \ge 0} \colon \sum_{n=0}^{\infty} |x_{n}|^{2} < \infty \right\}, \ \mathbb{N}_{0} = \mathbb{N} \cup \{0\}, \ \text{and} \ \|x\|_{\ell^{2}} = \left(\sum_{n=0}^{\infty} |x_{n}|^{2}\right)^{\frac{1}{2}}.$$

Show that the following operators are linear and continuous and compute their norms. **3-2-1.** $T_1: \ell^2 \to \ell^2: T_1((x_n)_{n\geq 0}) = (x_{n+1})_{n\geq 0}.$ **3-2-2.** $T_2: L^2([0,1]) \to \mathbb{C}: T_2(f) = \int_0^1 x^2 f(x) dx$, where: [9] [12] $L^{2}([0,1]) = \left\{ f: [0,1] \to \mathbb{R}: \int_{0}^{1} |f(x)|^{2} dx < \infty \right\} \text{ and } \|f\|_{L^{2}} = \left(\int_{0}^{1} |f(x)|^{2} dx \right)^{\frac{1}{2}}.$

God bless you !!!