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Problem 1: [34 Marks] 

1-1. Let X -=/-0. Give the definition of the following concepts: 
1-1-1. A a-algebra on X and a a-algebra generated by a family C of subsets of X. [2+2] 
1-1-2. A Borel a-algebra on X. [2] 
1-1-3. A measurable space on X. [l] 
1-1-4. A measure on X. [2] 
1-1-5. A measure space on X. [l] 

1-2. Let Ea non-empty set and A E P(E). Determine the a-algebra generated by C = {A}. [6] 

1-3. Let£ be a a-algebra on X, and X 0 C X. 
1-3-1. Show that £0 = {An X 0 IA E £} is a a-algebra on X 0 . [7] 
1-3-2. Show that a(£) = £. [5] 

1-4. Let K, K,' c P(X). Show that, if K, c K,' c a(K), then a(K') = a(K). [6] 

Problem 2: [31 Marks] 

We recall that /l,2 or /l,2 sometimes denoted /l,2 (N0 ) is the space of sequences defined by 

I 

f' = { X = (x.)neo: t, Ix.I'< 00}, No= N LJ {O}, and llxll,, = (t, Ix.I' r 
2-1. We assume that H = /l,2 is a complete space for the norm associated with ( ·, ·) H · Show that H = /l,2 

is a Hilbert space with respect to [10] 

00 

(x, Y)H = L XnYn 
n=l 

2-2. Show that the following operators are linear and continuous and compute their norms. 
2-2-1. T1: R2 -t R2 

: T1 ((xn)n~o) = (xn+1)n~O· [9] 
2-2-2. T2: L2([0, l]) -t <C: T2 (J) = f0

1 x2 f(x)dx, where: [12] 
l 

L2 ([0, l]) = {!: [0, l] -t IR: f0
1 lf(x)l2dx < oo} and IIJIIL2 = (f0

1 lf(x)l2dx) 
2

. 

Problem 3: [29 :tvlarks] 

3-1. State the Monotone Convergence Theorem (MCT) and the Dominated Convergent Theorem (DCT) 
respectively. [6] 

3-2. Show that the function f: (0, oo) -t IR, f(x) := sin x , \:/ x > 0, is Lebesgue integrable on [0, oo]. [6] 
eX - 1 

00 

3-3. Show that for any x > 0, we have f(x) = I::e-nxsinx. [5] 
n=l 

l·oo sinx 1 
3-4. Deduce that -- = - 2-- • 

. 0 ex - 1 n=l n + 1 
[12] 

God bless you ! ! ! 


