

NAMIBIA UNIVERSITY OF SCIENCE AND TECHNOLOGY

Faculty of Health, Natural **Resources and Applied** Sciences

School of Natural and Applied Sciences

Department of Mathematics. Statistics and Actuarial Science 13 Jackson Kaujeua Street T: +264 61 207 2913 Private Bag 13388 Windhoek NAMIBIA

E: msas@nust.na W: www.nust.na

QUALIFICATION : BACHELOR OF SCIENCE IN APPLIED MATHEMATICS AND STATISTICS	
QUALIFICATION CODE: 07BSAM; 07BSOC	LEVEL: 7
COURSE: COMPLEX ANALYSIS	COURSE CODE: CAN702S
DATE: NOVEMBER 2023	SESSION: 1
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION: QUESTION PAPER

PROF. FORTUNÉ MASSAMBA **MODERATOR:**

INSTRUCTIONS:

- 1. Answer all questions on the separate answer sheet.
- 2. Please write neatly and legibly with black or blue ink pen.
- 3. Do not use the left side margin of the exam paper. This must be allowed for the examiner.
- 4. No books, notes and other additional aids are allowed.
- 5. Mark all answers clearly with their respective question numbers.

PERMISSIBLE MATERIALS:

1. Non-Programmable Calculator

ATTACHMENTS:

NONE

This paper consists of 2 pages including this front page.

1. (a) Find the real and imaginary part of $\frac{z-2}{1-z}$.	(6)
(b) Find the image of the disk $ z + 1 < 2$ under the transformation $w = (1 + 2i)z + 2 - i$.	(5)
2. Evaluate $\int_{1-2i}^{1+2i} (e^{\pi z} + z + i) dz$.	(8)
3. Let $f(z) = \begin{cases} \frac{(\overline{z})^2}{z} & \text{if } z \neq 0\\ 0 & \text{if } z = 0 \end{cases}$, where $z = x + iy$. Then show that	
(a) $f(z)$ is not analytic at $(0, 0)$.	(13)
(b) the Cauchy-Riemann Equations are satisfied at $(0, 0)$.	(13)
4. Show that $u(x, y) = y^3 - 4xy - 3x^2y$ is harmonic and find its harmonic conjugate $v(x, y)$ for which $f(z) = u(x, y) + iv(x, y)$ is analytic.	(15)
5. Evaluate $\int_C (y - x - ix^2) dz$ where C is the counter joining 0 to $1 + i$, $1 + i$ to i and i to $-1 + 2i$.	(17)
6. Without evaluating the integral show that $ \int_C \frac{z+5}{z^3-3} dz \le \pi$, where C is the semicirle with center the origin and radius 3, oriented positively.	(8)
7. (a) Evaluate $\int_C \frac{c^{z^2}}{z^2+4} dz$ where C is the circle $ z - \frac{1}{2}i = 1$.	(4)
(b) Evaluate $\int_C \frac{e^{\pi z}}{z^2 + 9} dz$ where $C = C_1 + C_2$ and $C_1 = \{ z + 3i = 3 \}$, $C_2 = \{ z - 3i = 3 \}$.	(11)

*

END OF FIRST OPPORTUNITY EXAMINATION QUESTION PAPER