

Faculty of Health, Natural Resources and Applied Sciences

School of Health Sciences

Department of Clinical **Health Sciences**

13 Jackson Kaujeua Street T: +264 61 207 2970
Private Bag 13388 F: +264 61 207 9970
Windhoek E: dchs@nust.na
NAMIBIA W: www.nust.na

QUALIFICATION: BACHELOR of MEDICAL LABORATORY SCIENCES				
QUALIFICATION CODE: 08BMLS	LEVEL: 5			
COURSE: IMMUNOLOGY	COURSE CODE: IMY521S			
DATE: NOVEMBER 2023	SESSION: 1			
DURATION: 3 HOURS	MARKS: 100			

FIRST OPPORTUNITY: EXAMINATION QUESTION PAPER

EXAMINER:

MRS. CARA MIA DUNAISKI

MODERATOR:

MRS. FREDRIKA ENGELBRECHT

INSTRUCTIONS:

- 1. Answer all questions on the separate answer sheet.
- 2. Please write neatly and legibly.
- 3. Do not use the left side margin of the exam paper. This must be allowed for the examiner.
- 4. No books, notes and other additional aids are allowed.
- 5. Mark all answers clearly with their respective question numbers.

PERMISSIBLE MATERIALS:

1. Non-Programmable Calculator

ATTACHMENTS: None

This paper consists of 7 pages including this front page

QUESTION 1:

[20 MARKS]

Evaluate the statements in each numbered section and select the most appropriate answer or phrase from the given possibilities. Fill in the appropriate letter next to the number of the correct statement/phrase on your ANSWER SHEET.

- 1.1 In the immune response to a hapten-protein conjugate, in order to get anti-hapten (1) antibodies, it is essential that;
 - a) Hapten be recognized by helper T-cells.
 - b) The hapten be recognized by natural killer-cells.
 - c) The hapten be recognized by suppressor T-cells.
 - d) The protein be recognized by B-cells.
 - e) The protein be recognized by helper T-cells.
- 1.2 Antigen-presenting cells that activate helper T-cells must express which one of the following on their surface?
 - a) CD4
 - b) Class I MHC
 - c) Class II MHC
 - d) IgM
 - e) Thy-1
- 1.3 One principal function of complement is to:

(1)

- a) Bind antibodies attached to cell surfaces and to lyse these cells.
- b) Cross-link allergens.
- c) Inactivate perforin.
- d) Mediate the release of histamine.
- e) Phagocytose antigens.
- 1.4 Cytokines always act:

(1)

- a) Antagonistically with other cytokines.
- b) From a long range.
- c) By binding to specific receptors.
- d) In an autocrine manner.
- e) Synergistically with other cytokines.
- 1.5 Which of the following cytokines is characteristically produced by Th2 lymphocytes (1) which provide help for antibody production?
 - a) GM-CSF
 - b) IL-1
 - c) IL-4
 - d) IFN-γ
 - e) TNF-α

1.6	Hig	h-affinity B cell clones are usually generated by:	(1)
	a)	Class switching.	
	b)	Expression of high affinity precursors in the naive B cell population.	
	c)	Positive selection.	
	d)	Negative selection.	
	e)	Somatic hypermutation.	
1.7	Pri	or to class-switching, B cells express:	(1)
	a)	IgA	
	b)	IgA and IgG	
	c)	lgD	
	d)	IgD and IgM	
	e)	No surface antibody	
1.8	Wł	nich of the following is a primary lymphoid organ?	(1)
	a)	Lymph nodes	
	b)	Peyer's Patches	
	c)	Spleen	
	d)	Thymus	
	e)	Tonsil	
1.9	W	nen antigen reaches the lymph node:	(1)
	a)	There is an increase in the number of cells leaving the lymph node.	
	b)	There is a decrease in the number of cells leaving the lymph node.	
	c)	There is an immediate increase in the number of activated B cells.	
	d)	It is transported to the spleen.	
	e)	It is immediately destroyed by the macrophages.	
1.10	The specialised cell type involved in the entry of lymphocytes into a lymph node is		(1)
	cal	led:	
	a)	HEV endothelial cells.	
	b)	M cells.	
	c)	PALS cells.	
	d)	Selectins.	
	e)	Synovial cells.	
1.11	The	e following is characteristic of B cells but not T cells:	(1)
	a)	CD3	
	b)	CD40 ligand	
	c)	MHC class I	
	d)	Polyclonal activation by concanavalin A	
	e)	Surface immunoglobulin	

1.12	A Fab fragment:		
	a)	Is produced by pepsin treatment.	
	b)	Is produced by the separation of heavy and light chains.	
	c)	Binds antigens.	
	d)	Lacks light chains.	
	e)	Has no interchain disulphide bonds.	
1.13	Pa	ttern recognition receptors include:	(1)
	a)	PAMPs.	
	b)	LPS.	
	c)	Lipotechoic acid.	
	d)	Lectin-like molecules.	
	e)	Bacterial peptidoglycan.	
1.14	Th	e complement component C3 is cleaved by:	(1)
	a)	Factor D.	
	b)	C4b2a3b.	
	c)	C3bBb.	
	d)	C3b.	
	e)	C1s.	200
1.15	C3	b:	(1)
	a)	Opsonises bacteria.	
	b)	Is an anaphylatoxin.	
	c)	Is chemotactic.	
	d)	Is the inactive form of C3.	
	e)	Directly injures bacteria.	
1.16	Pos	sitive selection in the thymus is mediated by:	(1)
	a)	B cells.	27 2
	b)	Cortical epithelial cells.	
	c)	Follicular dendritic cells.	
	d)	Interdigitating medullary cells.	
	e)	Macrophages.	
1.17	Spe	ecific antibodies are readily detectable in serum following primary contact with	(1)
		igen after:	3
	a)	10 minutes.	
	b)	1 hour.	
	c)	5-7 days.	
	d)	3-5 weeks.	
	e)	Only following a second encounter with the antigen	

- 1.18 The antigen portion on an antigen –presenting cell that is recognised by the $\alpha\beta$ -TCR is:
 - a) The native protein antigen together with the Major Histocompatibility Complex molecule.
 - b) Processed peptide antigen together with the Major Histocompatibility Complex molecule.
 - c) Processed peptide antigen.
 - d) Native antigen.
 - e) The Major Histocompatibility Complex molecule alone.
- 1.19 Antigen processing for presentation by an MHC class II molecule involves:

(1)

(1)

- a) Calnexin.
- b) HLA-DM.
- c) LMP2.
- d) Proteasome.
- e) TAP 1 and TAP 2.
- 1.20 Suppression of Th2 lymphocytes by Th1 lymphocytes may be mediated by:

(1)

- a) IL-4.
- b) GM-CSF.
- c) IL-1.
- d) TNF-β.
- e) INF-γ.

SECTION B: SHORT AND LONG QUESTIONS

[80 MARKS]

QUESTION 2:

[10 MARKS]

A 54-year-old female presented at her GP with a history of stiffness in her joints in the mornings which normally lasted more than an hour and arthritis which was becoming progressively worse. Rheumatoid nodules were visible particularly in her hands. Analysis of her blood revealed elevated levels of rheumatoid factors. The doctor placed her on a regimen of medication to control the disease. This included monoclonal antibodies against tumour necrosis factor-alpha (TNF- α) which is implicated in rheumatoid arthritis. Rheumatoid arthritis is more frequently observed in patients with HLA-DR4 allele. Answer the following questions.

2.1 Define Cytokines and list three (3) major functions.

(4)

2.2 Sketch and label the MHC class II molecule that is associated with rheumatoid arthritis.

(6)

QUESTION 3:

[10 MARKS]

Vaccines have changed the face of medical science. Through successful vaccination strategies, the burden of infectious disease has decreased around the world.

2700	- 6	(2)	
₹ 7	Define the term "Vaccination".	(2)	

- 3.2 Name the first disease that was successfully eradicated from the world by means of a vaccination campaign. (1)
- 3.3 Louis Pasteur's work with chicken cholera contributed to our understanding of why vaccination is possible. Describe the "accidental" experiment that he conducted. In your answer, include an explanation of his findings.

QUESTION 4: [30 MARKS]

A 38-year old woman with <u>severe</u> pre-eclampsia gave birth to a healthy baby girl (Monica) via C-section in her 30th week of pregnancy. The new born weighed 1.3 kg and had no obvious congenital abnormalities. As a result of her premature birth, the cord blood was sent to the laboratory to establish the immunoglobulin concentration. Her serum IgG was 0.1g/litre. The normal range for IgG in a neonate is normally the same as that of the mother i.e. 7.2–19 g/liter. A diagnosis of hypogammaglobulinaemia of prematurity was made. Answer the following questions.

- 4.1 Why does a neonate normally have the same concentration of IgG as the mother's at (2) birth?
- 4.2 If Monica were to develop an infection within her first week of life, passive immunity could be achieved.
 - 4.2.1 What would passive immunity entail? (1)
 - 4.2.2 Why would passive immunity be administered? (3)
 - 4.2.3 Would the passive immunity give her life-long protection? Motivate your answer. (2)
- 4.3 On day 10, the infant was diagnosed with a bacterial infection. *Staphylococcus aureus* is a bacterial species that causes extracellular infections.
 - 4.3.1 Describe how the bacteria would be processed into peptides which are then (10) presented to Tlymphocytes.
 - 4.3.2 Name the type of immune response that would predominate. Motivate your (2) answer.
 - 4.3.3 Name the class of antibody that would be initially produced after a (2) lymphocyte's first encounter with *Staphylococcus aureus*.
 - 4.3.4 Sketch and label IgG antibody. (8)

QUESTION 5: [30 MARKS]

A 15 year old male developed pneumonia and was placed on Penicillin. He developed puffy eyes, urticaria, a swollen face and wheezing. This was not the first time he had been placed on penicillin for the treatment of bacterial infections. Tests to determine the presence of complement proteins revealed that the level of complement was below the normal levels. He was diagnosed with druginduced serum sickness. Serum sickness results from the formation of small immune complexes in the presence of excess antigen. These small immune complexes are not removed from the circulation and instead are deposited in the tissue. The immune system tries to rid the body of these deposited immune complexes by activating complement proteins. Anaphylatoxins which are released during the activation of complement contribute to the inflammatory responses which manifested in the symptoms he exhibited. Answer the following questions.

- 5.1 Normally complement-opsonized immune complexes can be removed from (4) circulation with the aid of phagocytes. Explain how the phagocytes carry out this function.
- 5.2 Name the complement pathway that is activated in this scenario where immune (2) complexes are deposited in tissues.
- 5.3 Describe the formation of membrane attach complex (MAC) in the pathway you (15) named in 5.2.
- 5.4 In the scenario above anaphylatoxins are produced and cause an inflammatory (4) response. What are these anaphylatoxins and describe their role in inflammation?
- 5.5 Define hypersensitivity and briefly explain how the four types are differentiated from (5) each other.

END OF QUESTION PAPER