

FACULTY OF COMMERCE; HUMAN SCIENCES AND EDUCATION

HAROLD PUPKEWITZ GRADUATE SCHOOL OF BUSINESS

QUALIFICATION: DIPLOMA IN BUSINESS PROCESS MANAGEMENT						
QUALIFICATION CODE: 06DBPM LEVEL: 6						
COURSE CODE: BBS611C	COURSE NAME: BASIC BUSINESS STATISTICS					
SESSION: JANUARY 2025	PAPER: PAPER 1					
DURATION: 3 HOURS	MARKS: 90					

SECOND OPPORTUNITY / SUPPLEMENTARY EXAMINATION – QUESTION PAPER						
EXAMINER(S)	Mr. A. Roux					
MODERATOR:	Mr. J. Amunyela					

INSTRUCTIONS	
1. Answer ALL the questions.	
2. Write clearly and neatly.	
3. Number the answers clearly.	

PERMISSIBLE MATERIALS

- 1. Examination paper
- 2. Examination script
- 3. Scientific calculator

ATTACHMENTS

- 1. Standard Normal Probability Distribution Table
- 2. 1 x A4 Graph Sheet

THIS QUESTION PAPER CONSISTS OF 4 PAGES (INCLUDING THIS FRONT PAGE)

down the le									only need to v n	vrite
1.1 Which of when d		_		ures of	cer	ntral tende	ncy ca	n reliat	oly be used	
a) Mean	b) Me	edian	c) Mo	de	d)	All the ab	ove			[2]
1.2 A sampa) An experc) A variable	riment i			on		b) A subs			ulation opulation	[2]
1.3 A paran a) Calculation			the po	oulatior	า			ent tha	it is made	
c) A value o	bserve	d in the	exper	iment		d) All of	the abo	ove		[2]
1.4 Weight	-									701
a) Continuo	us		b) Dis	screte		c) Or	dinal		d) Interval	[2]
1.5 Research		o samp								
a) Reduce of		S	•						g is interesting	
d) Easy to r	nanage	due to	mana	geable	logi	istics requ	iiremer	nts		[2]
QUESTION	2	[20]								
The Headm	aster o	f Orion	High S	School	rev	ealed the	mathe	matics	results of a G	Grade
12 class of	2014.	The a	im wa	s to ca	ateg	orise the	learne	ers into	five perform	ance
categories /				pective	ely.	The follow	ving ta	ble sho	ows data that	were
Α	С	E	В	D	С	D	В	D	С	
D	В	D	E	С	Α	D	С	D	E	
D	С	Α	В	D	С	В	Е	С	D	
В	С	D	С	D	С	E	Α	D	С	
С	В	D	D	В	D	С	E	В	Α	

- 2.1) Construct the absolute frequency distribution for the data set (10)
- 2.2) Construct the relative frequency distribution for the data set. (3)
- 2.3) Construct the bar chart for the absolute frequency distribution. (7)

QUESTION 3 [25]

3.1) The monthly rentals paid by 30 flat tenants (in N\$) are

Rent (N\$)	Number of Tenants
149.5 249.5	11
249.5 349.5	10
349.5 449.5	4
449.5 549.5	3
549.5 649.5	2

From your frequency distribution table provided above, calculate and interpret the following:

- 3.1.1) Mean rental paid (5)
- 3.1.2) The modal rental paid. (5)
- 3.1.3) The median rental paid. (5)
- 3.2) The Office of The Bursar at The Namibia University of Science and Technology (NUST) revealed some information regarding method of payment for a group of 2000 students at different levels of study.

	Bursary	Loan	Self	Totals
Certificate	12	379	727	1118
Diploma	39	106	642	787
Degree	48	20	57	95
Totals	69	505	1426	2000

3.2.1) Find the probability of randomly selecting one student from this group who pays for him/herself?
(2)

	Find the probability of randomly selfas a Diploma or a Degree? Find the probability of randomly selfas a Bursary or Degree?		(4)
QUES	STION 4 [35]		
4.1)	_	ealed that only 12 out of every 20 stu tion, determine the probability that ou	
4.1.2) 4.1.3)	None will graduate All will graduate. At most one student will graduate At least four will graduate		(4) (4) (5) (5)
	local ambulance service handles 0 bility distribution for the number of		he
	ber of service calls (x)	Probability, p(x)	
0 1 2 3 4 5		0.10 0.15 0.30 0.20 0.15 0.10	
4.2.1)	Find P ($1 \le x \le 3$)		(2)
4.2.2)	What is the expected number of ser	vice calls?	(5)
4.2.3)	What is the variance in the number	of service calls?	(5)
4.2.4)	What is the standard deviation?		(2)
4.2.5)	What is the coefficient of variation in	n the number of service calls	(3)

Z - Table

The table shows cumulative probabilities for the standard normal curve.

Cumulative probabilities for NEGATIVE z-values are shown first. SCROLL DOWN to the 2^{nd} page for POSITIVE z

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
-0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
-0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641

Cumulative probabilities for POSITIVE z-values are shown below.

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

•