

NAMIBIA UNIVERSITY OF SCIENCE AND TECHNOLOGY

Faculty of Health, Natural **Resources and Applied** Sciences

School of Natural and Applied Sciences

Department of Mathematics, Statistics and Actuarial Science 13 Jackson Kaujeua Street T: +264 61 207 2913 Private Bag 13388 Windhoek NAMIBIA

E: msas@nust.na W: www.nust.na

QUALIFICATION : BACHELOR of SCIENCE IN APPLIED MATHEMATICS AND STATISTICS	
QUALIFICATION CODE: 07BSAM	LEVEL: 7
COURSE: NUMERICAL METHODS 2	COURSE CODE: NUM702S
DATE: NOVEMBER 2023	SESSION: 1
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY: EXAMINATION QUESTION PAPER

EXAMINER: Dr S.N. NEOSSI-NGUETCHUE MODERATOR: Prof S.S. MOTSA

INSTRUCTIONS:

- 1. Answer all questions on the separate answer sheet.
- 2. Please write neatly and legibly.
- 3. Do not use the left side margin of the exam paper. This must be allowed for the examiner.
- 4. No books, notes and other additional aids are allowed.
- 5. Show clearly all the steps used in the calculations. All numerical results must be given using 5 decimals where necessary unless mentioned otherwise.
- 6. Mark all answers clearly with their respective question numbers.

PERMISSIBLE MATERIALS:

1. Non-Programmable Calculator

ATTACHEMENTS

None

This paper consists of 3 pages including this front page

Problem 1 [19 Marks]

1-1. Find the Padé approximation $R_{2,2}(x)$ for $f(x) = \ln(1+x)/x$ starting with the MacLaurin expansion

$$f(x) = 1 - \frac{x}{2} + \frac{x^2}{3} - \frac{x^3}{4} + \frac{x^4}{5} - \dots$$
 [12]

1-2. Use the result in 1-1. to establish $\ln(1+x) \approx R_{3,2} = \frac{30x + 21x^2 + x^3}{30 + 36x + 9x^2}$ and express $R_{3,2}$ in continued fraction form. [7]

Problem 2 [30 Marks]

For any non negative interger n we define Chebyshev polynomial of the first kind as

$$T_n(x) = \cos(n\theta)$$
, where $\theta = \arccos(x)$, for $x \in [-1, 1]$.

2-1. Show the following property:

 T_n has n distinct zeros $x_k \in [-1, 1]$: $x_k = \cos\left(\frac{(2k+1)\pi}{2n}\right)$ for $0 \le k \le n-1$.

2-2. Compute the expressions of the first five Chebyshev polynomials of the first kind T_0, T_1, T_2, T_3 and T_4 . [3]

- **2-3.** Given the trucated power series $f(x) = 1 + 2x x^3 + 3x^4$.
 - (i) Economise the power series f(x).
 - (ii) Find the Chebyshev series for f(x).

2-4. (i) Show that the following function f is even and use an appropriate result to find its Fourier series $f(x) = \begin{cases} \frac{\pi}{2} + x, & \text{for } -\pi \le x < 0, \end{cases}$ [12]

$$\left\{\frac{\pi}{2} - x, \text{ for } 0 \le x < \pi. \right\}$$

(ii) Set
$$x = 0$$
 and conclude that $\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots$. [2]

Problem 3 [27 Marks]

3-1. Given the integral

$$\int_0^3 \frac{\sin(2x)}{1+x^5} dx = 0.6717578646 \cdots$$

3-1-1. Compute T(J) = R(J,0) for J = 0, 1, 2, 3 using the sequential trapezoidal rule. [10]

3-1-2. Use the results in **3-1-1.** and Romberg's rule to compute the values for the sequential Simpson rule $\{R(J,1)\}$, sequential Boole rule $\{R(J,2)\}$ and the third impprovement $\{R(J,3)\}$. Display your results in a tabular form. [12]

3-2. State the three-point Gaussian Rule for a continuous function f on the interval [-1, 1] and show that the rule is exact for $f(x) = 5x^4$. [5]

[5]

[3]

[5]

Problem 4 [24 Marks]

.

ŗ,c

4-1. The matrix A and its inverse are A^{-1} are given below

$$A = \begin{bmatrix} 1/2 & -1 \\ -1 & 1 \end{bmatrix}, \qquad A^{-1} = \begin{bmatrix} -2 & -2 \\ -2 & -1 \end{bmatrix}.$$

• Use the power method to find the eigenvalue of the matrix A with the smallest absolute value. Start with the vector $\mathbf{x}^{(0)} = (1, 0)^T$ and perform two iterations. [6]

4-2. Use Jacobi's method to find the eigenpairs of the matrix

$$A = \begin{bmatrix} 1 & \sqrt{2} & 2\\ \sqrt{2} & 3 & \sqrt{2}\\ 2 & \sqrt{2} & 1 \end{bmatrix}$$

[18]

God bless you !!!