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Problem 1 [19 Marks] 

1-1. Find the Pade approximation R2,2 (x) for f(x) = ln(l +x)/x starting with the MacLaurin expansion 

x x2 x3 x4 
f(x) = 1 - - + - - - + - - .. · . 

2 3 4 5 [12] 

30x + 21x2 + x 3 
1-2. Use the result in 1-1. to establish ln(l + x) R3 ,, = 

9 
,, and express R 3 2 in continued 

·- 30 + 36x + x- ' 
fraction form. [7] 

Problem 2 [30 Marks] 

For any non negative interger n we define Chebyshev polynomial of the first kind as 

Tn(x) = cos(n0), where 0 = arccos(x), for x E [-1, 1]. 

2-1. Show the following property: 

. . ((2k+1)1r) Tn has n d1stmct zeros Xk E [-1, 1] : Xk = cos _;__----'-- for 0 :5. k :5. n - 1. 
2n 

[5] 

2-2. Compute the expressions of the first five Chebyshev polynomials of the first kind T0 , T1, T2 , T3 and 
n. 
2-3. Given the trucated power series f(x) = 1 + 2x - x3 + 3x4 • 

(i) Economise the power series f(x). 
(ii) Find the Chebyshev series for f(x). 

[3] 
[5] 

;;:; =(;{) S~_;:_w xx'.h•~::e~o~I';:! f:,ction f is even and use an apprnpdate result to find its Fourier se;::; 

2 , for 0 :5. X < 7r. 

1r2 1 1 1 
(ii) Set x = 0 and conclude that 8 = 1 + 32 + 52 + 72 + · · · . [2] 

Problem 3 [27 Marks] 

3-1. Given the integral 

{
3 

sin( 2x) dx = 0.6717578646 · · · 
} 0 1 + x 5 

3-1-1. Compute T(J) = R(J, 0) for J = 0, 1, 2, 3 using the sequential trapezoidal rule. [10] 

3-1-2. Use the results in 3-1-1. and Romberg's rule to compute the values for the sequential Simpson rule 
{ R( J, 1)}, sequential Boole rule { R( J, 2)} and the third impprovement { R( J, 3)}. Display your results in 
a tabular form. [12] 

3-2. State the three-point Gaussian Rule for a continuous function f on the interval [-1, 1] and show that 
the rule is exact for f ( x) = 5x4 . [5] 
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Problem 4 [24 Marks] 

4-1. The matrix A and its inverse are A- 1 are given below 

A= [1/2 -lJ 
-1 1 ' 

• Use the power method to find the eigenvalue of the matrix A with the smallest absolute value. 
Start with the vector x( 0) = (1, of and perform two iterations. [6] 

4-2. Use Jacobi's method to find the eigenpairs of the matrix 

[l v'2 2] 
A= v'2 3 v'2 

2 v'2 1 

[18] 

God bless you ! ! ! 
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