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Question 1 

1.1 Given that u = (6 - :i:, 4 - y) and v = (x - 4, y + 2) arc vectors in JR2 , such that u = v, 
solve for x and y? [4] 

1.2 Determine a unit vector perpendicular to both of the vectors A = c + d and B = c - d, 
where c = 3i + 2j + 2k and d = i + 2j - 2k. [7] 

1.3 Consider the vectors z = (3 + 4i, 2 - i) and w = (1 + 3i, 1 - 2i) in C2 . Determine whether 
z and w are orthogonal. [6] 

1.4 Prove that if x and y are orthogonal vectors in R"', then show that 

[6] 

Question 2 

2.1 ·write down a 4 x 4 matrix whose i/h entry is given by a.,j = ij~-l, and comment on your 
matrix. [6] 

2.2 Let A be a square matrix. State what is meant by each of the following statements. 

(a) A is symmetric 

(b) A is orthogonal 

(c) A is skew-symmetric 

2.3 Conside, the matcL, A - ( ~l ; ~5 ) . 

[l] 

[l] 

[l] 

a) Use the Cofactor expansion method along the second col-u,mn to evaluate the determi-
nant of A. [7] 

b) Is A invertible? If it is, Use the Gauss-.Jon.lan Elimination method to find A- 1
. [14] 

c) Find <let (3(2A)- 1). [6] 
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Question 3 
Determine whether or not the vector (-1,1,5) is a linear combination of the vectors (1,2,3), (0,1,4) 
and (2,3,6). [15] 

Question 4 

a) Prove that a vector space cannot have more than one zero vector. [6] 

b) Let Mnn be a vector space whose elements a.re all the n x n matrices, with the usual addition 
and scalar multiplication for matrices. Determine whether the following set is a subspace 
of lv'lnn· 

S = {A E l\llnn I tr(A) = O} 

[11] 

c) Prove or disprove that if U and W are subspaces of a vector space V, then Un W is also a 
subspace of V. [9] 
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