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Question 1

1.1 Given that u = (6 — 2,4 —y) and v = (z — 4,y + 2) are vectors in R?, such that u = v,

solve for x and y? [4]

1.2 Determine a unit vector perpendicular to both of the vectors A = ¢ +d and B = ¢ — d,
where c =31+ 2j+ 2k and d =i+ 2j — 2k. 7]

1.3 Consider the vectors z = (3 4 44,2 — i) and w = (1 + 3i,1 — 2i) in C2. Determine whether

z and w are orthogonal. (6]

1.4 Prove that if x and y are orthogonal vectors in R™, then show that

I+ %= llxl>+ly |

Question 2

2.1 Write down a 4 x 4 matrix whose i entry is given by a;; = and comment on your

_1
SR
matrix. (6]

2.2 Let A be a square matrix. State what is meant by each of the following statements.

(a) A is symmetric 1]

(b) A is orthogonal (1]

(c) A is skew-symmetric (1]
-1 1 2
2.3 Consider the matrix A = 3 0 =5
1 7 2

a) Use the Cofaclor ezpansion method along the second column to evaluate the determi-
nant of A. (7]
b) Is A invertible? If it is, Use the Gauss-Jordan Elimination method to find A~ [14]

c) Find det (3(24)71). (6]



Question 3
Determine whether or not the vector (-1,1,5) is a linear combination of the vectors (1,2,3), (0,1,4)

and (2,3,6). [15]
Question 4
a) Prove that a vector space cannot have more than one zero vector. 6]

b) Let M, be a vector space whose elements are all the n x n matrices, with the usual addition
and scalar multiplication for matrices. Determine whether the following set is a subspace
of M,,,.
S ={A e M,,|tr(A) =0}

[11]

¢) Prove or disprove that if U and W are subspaces of a vector space V, then U N W is also a

subspace of V. 9]

[ 8]



