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Part I: True or false questions. 

For each of the following questions, state whether it is true or false. Justify your answer. 

1. If T: P3 -+ P3 is a linear transformation, then Tis an isomorphism. (3) 

2. If the characterstic equation of a matrix A is given by p(>.) = >.2 (>. - l)(>- - 2)3, then 
the size of matrix A is 6 x 6. (2) 

3. Let A be an n x n matrix. If A has fewer than n distinct eigenvalues then A is not 
diagonalizable. (3) 

4. If q is a quadratic form on a vector space V, then q(-o:) = -q(o:). (3) 

Part II: Work out Problems. 

1. Let V and W be vector spaces over a field K and let T: V -> Vi/ be a mapping. State 
what it means to say T is linear transformation. (3) 

2. Let T be the mapping T: P3 -+ P2 defined by T(a 0 + a1x + a2x2 + a3x3) = 3ao + a3x2. 
Then 
(a) show that Tis linear. (12) 

(b) find a basis for the kernel of T. (7) 

3. Let A and B be n x n similar matrices.Then prove that A and B have the same Char-
acterstic polynomial. ( 11) 

4. Find an orthonormal martix P for the symmetric matrix A = (~ ~) such that 
0 2 5 

pT AP is a diagonal matrix. 

5. Consider the bases B = {l + x + x2 , x + x2, x2} and C = {l, x, x2 } of P2 . 

(a) Find the cooordinate vector [p(x)]s of p(x) where p(x)= 1 + x2
. 

(b) ] Find the change of basis matrix: Pc..-B from B to C. 
(c) Use the results in (a) and (b) to compute [p(x)]c where p(x)= 1 + x 2

. 

(26) 

(6) 
(5) 
(4) 



6. (a) Find the quadratic form q (;:) that corresponds to the symmetric matrix 

A= ( -;3). 
-3 2 5 

(8) 

(b) Find the symmetric matrix corresponding to the quadratic form q(x 1 , x2, x3 ) 

2xI + 2x1x2 + 4x2X3 - l0x1x3 - x~. (7) 
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