

NAMIBIA UNIVERSITY OF SCIENCE AND TECHNOLOGY

Faculty of Health, Natural **Resources and Applied** Sciences

School of Natural and Applied Sciences

Department of Mathematics, Statistics and Actuarial Science 13 Jackson Kaujeua Street T: +264 61 207 2913 Private Bag 13388 Windhoek NAMIBIA

E: msas@nust.na W: www.nust.na

QUALIFICATION : BACHELOR OF SCIENCE IN APPLIED MATHEMATICS AND STATISTICS	
QUALIFICATION CODE: 07BSAM; 07BSOC	LEVEL: 6
COURSE: LINEAR ALGEBRA 2	COURSE CODE: LIA601S
DATE: NOVEMBER 2023	SESSION: 1
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION: QUESTION PAPER

EXAMINER:	DR. NEGA CHERE

MODERATOR: DR. DAVID IIYAMBO

INSTRUCTIONS:

- 1. Answer all questions on the separate answer sheet.
- 2. Please write neatly and legibly with black or blue ink pen.
- 3. Do not use the left side margin of the exam paper. This must be allowed for the examiner.
- 4. No books, notes and other additional aids are allowed.
- 5. Mark all answers clearly with their respective question numbers.

PERMISSIBLE MATERIALS:

1. Non-Programmable Calculator

ATTACHMENTS:

NONE

This paper consists of 3 pages including this front page.

Part I: True or false questions.

For each of the following questions, state whether it is true or false. Justify your answer.

- 1. If $T: P_3 \to P_3$ is a linear transformation, then T is an isomorphism. (3)
- 2. If the characteristic equation of a matrix A is given by $p(\lambda) = \lambda^2 (\lambda 1)(\lambda 2)^3$, then the size of matrix A is 6×6 . (2)
- Let A be an n x n matrix. If A has fewer than n distinct eigenvalues then A is not diagonalizable.
 (3)
- 4. If q is a quadratic form on a vector space V, then $q(-\alpha) = -q(\alpha)$. (3)

Part II: Work out Problems.

- 1. Let V and W be vector spaces over a field K and let T: $V \rightarrow W$ be a mapping. State what it means to say T is linear transformation. (3)
- 2. Let T be the mapping $T: P_3 \rightarrow P_2$ defined by $T(a_0 + a_1x + a_2x^2 + a_3x^3) = 3a_0 + a_3x^2$. Then
 - (a) show that T is linear.
 - (b) find a basis for the kernel of T.
- 3. Let A and B be $n \times n$ similar matrices. Then prove that A and B have the same Characteristic polynomial. (11)
- 4. Find an orthonormal martix P for the symmetric matrix $A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 5 \end{pmatrix}$ such that $P^{T}AP$ is a diagonal matrix. (26)
- 5. Consider the bases $\mathcal{B} = \{1 + x + x^2, x + x^2, x^2\}$ and $\mathcal{C} = \{1, x, x^2\}$ of P_2 .
 - (a) Find the coordinate vector $[p(x)]_{\mathcal{B}}$ of p(x) where $p(x) = 1 + x^2$. (6)
 - (b)] Find the change of basis matrix $P_{\mathcal{C}\leftarrow\mathcal{B}}$ from \mathcal{B} to \mathcal{C} .
 - (c) Use the results in (a) and (b) to compute $[p(x)]_{\mathcal{C}}$ where $p(x) = 1 + x^2$. (4)

(12)

(7)

(5)

6. (a) Find the quadratic form $q\begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix}$ that corresponds to the symmetric matrix

$$A = \begin{pmatrix} 4 & 1 & -3 \\ 1 & 0 & 2 \\ -3 & 2 & 5 \end{pmatrix}.$$
 (8)

(b) Find the symmetric matrix corresponding to the quadratic form $q(x_1, x_2, x_3) = 2x_1^2 + 2x_1x_2 + 4x_2x_3 - 10x_1x_3 - x_2^2$. (7)

END OF FIRST OPPORTUNITY EXAMINATION QUESTION PAPER