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Question 1

1.1 Consider the vectors p=i+j—2k and q =1—3j+ 12k

a) Find the unit vector in the direction of p.

b) Find the angle (in degrees) between p and q. Give you answer correct to 1 d.p.

1.2 Find a unit vector perpendicular to both the vectors i + j and j + k.

1.3 Prove that if x and y are orthogonal vectors in R", then

1% + 1= lll®+ly .

Question 2

2.1 Let A= ( asj ) be an n X n matrix.

a) When do we say that A is a symmetric matrix?
b) Prove that A + AT is a symmetric matrix.

c) Prove that if A is an invertible symmetric matrix, then A~! is also symmetric.

2.2 Consider the following matrix.

1 0 0
A= |0 cosz sinz
0 sinz —cosz

8]
(8]

[6]

2]
(5]
[6]

a) Use the Cofactor ezpansion method to evaluate the determinant of A through column

one (1).

b) Is A invertible? If it is, find A~! using the adjoint matrix approach.

Question 3

Given that matrix

0 20 -2
B=]3 1 3
3a 3 -1

is symmetric, find the value of ab?

(6]

[12]



Question 4

Use the Gaussian elimination method to find the solution of the following system of linear

equations, if it exists.

r1+3x2—23 = 1
2c1+xo+x3 = 4
3zy + 4z 4+ 223 = -1
(14]
Question 5
a) Prove that a vector space cannot have more than one zero vector. 6]

b) Let M,,, be a vector space whose elements are all the n x n matrices, with the usual addition
and scalar multiplication for matrices. Determine whether the following set is a subspace
of My,,.

S ={A € My, |tr(4) =0}

[11]

c) Prove or disprove that if S and T are subspaces of a vector space V, then SN T is also a
subspace of V. 9]




