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Question 1 

1.1 Consider the vectors p = i + j - 2k and q = i - 3j + 12k 

a) Find the unit vector in the direction of p. [3] 

b) Find the angle (in degrees) between p and q. Give you answer correct to 1 d.p. [8] 

1.2 Find a unit vector perpendicular to both the vectors i + j and j + k. [5] 

1.3 Prove that if x and y are orthogonal vectors in !Rn, then 

[6] 

Question 2 

2.1 Let A= ( aij ) be an n x n matrix. 

a) When do we say that A is a symmetric matrix? [2] 

b) Prove that A + AT is a symmetric matrix. [5] 

c) Prove that if A is an invertible symmetric matrix, then A- 1 is also symmetric. [6] 

2.2 Consider the following matrix. 

A = (~ co~ x si~ x ) . 
0 sinx - cos.1: 

a) Use the Cofactor expansion method to evaluate the determinant of A through column 
one (1). [6] 

b) Is A invertible? If it is, find A- 1 using the adjoint matrix approach. 

Question 3 

Given that matrix 

is symmetric, find the value of ab? 

B = (~ 
3a 

1 

[12] 

[7] 



Question 4 

Use the Gau.ssian elimination method to find the solution of the following system of linear 
equations, if it exists. 

Question 5 

XI+ 3x2 - X3 1 

2x1 + X2 + X3 = 4 

3x1 + 4x2 + 2x3 = -1 

a) Prove that a vector space cannot have more than one zero vector. 

[14] 

[6] 

b) Let M 1m be a vector space whose elements are all then x n matrices, with the usual addition 
and scalar multiplication for matrices. Determine whether the following set is a subspace 
of M,m• 

S = {A E Mnn I tr(A) = O} 

[11] 

c) Prove or disprove that if S and T are subspaces of a vector space V, then Sn T is also a 
subspace of V. [9) 
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