NAMIBIA UNIVERSITY OF SCIENCE AND TECHNOLOGY

Faculty of Health, Natural **Resources and Applied** Sciences

-

School of Natural and Applied Sciences

Department of Mathematics, Statistics and Actuarial Science 13 Jackson Kaujeua Street T: +264 61 207 2913 Private Bag 13388 Windhoek NAMIBIA

E: msas@nust.na W: www.nust.na

QUALIFICATION : BACHELOR OF SCIENCE IN APPLIED MATHEMATICS HONOURS	
QUALIFICATION CODE: 08BSHM	LEVEL: 8
COURSE: FUNCTIONAL ANALYSIS	COURSE CODE: FAN802S
DATE: JANUARY 2024	SESSION: 1
DURATION: 3 HOURS	MARKS: 100

SECOND OPPORTUNITY / SUPPLEMENTARY: EXAMINATION QUESTION PAPER

EXAMINER:	Dr S.N. NEOSSI-NGUETCHUE	
MODERATOR:	Prof F. MASSAMBA	

INSTRUCTIONS:

- 1. Answer all questions on the separate answer sheet.
- 2. Please write neatly and legibly.
- 3. Do not use the left side margin of the exam paper. This must be allowed for the examiner.
- 4. No books, notes and other additional aids are allowed.
- 5. Show clearly all the steps used in the calculations.
- 6. Mark all answers clearly with their respective question numbers.

PERMISSIBLE MATERIALS:

1. Non-Programmable Calculator

ATTACHEMENTS

None

This paper consists of 2 pages including this front page

Problem 1: [45 Marks]

1-1. Let $f: \mathbb{R} \to \mathbb{R}$ such that $x \mapsto \begin{cases} 0, & \text{if } x \in \mathbb{Q}, \\ 1, & \text{if } x \notin \mathbb{Q}. \end{cases}$ Show that f is Borel-measurable. (Hint: for any $a \in \mathbb{R}$, consider $E = \{x \in \mathbb{R} : f(x) < a\}$ and show that $f^{-1}(E) \in \mathcal{B}(\mathbb{R})$) [10]

1-2. Let $(\mathbf{X}, \mathcal{F})$ be a measurable space. Prove that if $A_n \in \mathcal{F}, n \in \mathbb{N}$, then $\bigcap A_n \in \mathcal{F}$.

1-3. Let Ω be a non-empty set and $\mathcal{F}_{\alpha} \subset \mathcal{P}(\Omega), \alpha \in I$ an arbitrary collection of σ -algebras on Ω . State the definition of a σ -algebra and prove that [4+6=10]

$$\mathcal{F} := \bigcap_{\alpha \in I} \mathcal{F}_{\alpha}$$
 is a σ -algebra.

1-4. Let $(\mathbf{X}, \mathcal{A}, \mu)$ be a measure space.

(i) What does it mean that $(\mathbf{X}, \mathcal{A}, \mu)$ be a measure space?

(ii) Show that for any $A, B \in \mathcal{A}$, we have the equality: $\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$. [7] (Hint: Consider two cases: (i) $\mu(A) = \infty$ or $\mu(B) = \infty$; (ii) $\mu(A), \mu(B) < \infty$ and then express $A, B, A \cup B$ in terms of $A \setminus B, B \setminus A, A \cap B$ where necessary.)

1-5. Show that the following Dirichlet function is Lebesgue integrable but not Riemann integrable [10]

$$\chi := \mathbb{1}_{\mathbb{Q} \cap [0,1]} \colon [0,1] \to \mathbb{R}$$
$$x \mapsto \begin{cases} 1, & \text{if } x \in \mathbb{Q} \\ 0, & \text{if } x \notin \mathbb{Q} \end{cases}$$

Problem 2: [20 Marks]

2-1. Define what is a compact set in a topological space.

2-2. Show that (0, 1] is not a compact set for usual topology of \mathbb{R} .

2-3. Let E be a Hausdorff topological space and $\{a_n\}_{n\in\mathbb{N}}$ a sequence of elements of E converging to a. Show that $K = \{a_n | n \in \mathbb{N}\} \cup \{n\}$ is compact in E. 8

Problem 3: [35 Marks]

3-1. Use the convexity of $x \mapsto e^x$ to prove the Arithmetic-Geometric Mean inequality:

$$\forall x, y > 0$$
, and $0 < \lambda < 1$, we have: $x^{\lambda}y^{1-\lambda} \leq \lambda x + (1-\lambda)y$.

3-2. Use the inequality in question 2-1 to prove Young's inequality:

$$\alpha\beta \leq \frac{\alpha^p}{p} + \frac{\beta^q}{q}, \; \forall \alpha,\beta > 0, \; \text{where} \; p,q \in (1,\infty) \colon \frac{1}{p} + \frac{1}{q} = 1.$$

3-3. Use the result in question **3-2** to prove Hölder's inequality:

$$\sum_{i=1}^{n} |x_i y_i| \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} \left(\sum_{i=1}^{n} |y_i|^q\right)^{1/q}, \forall \mathbf{x} = (x_i), \mathbf{y} = (y_i) \in \mathbb{R}^n, p, q \text{ as above }.$$

3-4. Consider $(\mathbf{X}, \|\cdot\|_{\infty,1})$, where $\mathbf{X} = \mathcal{C}^1[0, 1]$ and $\|f\|_{\infty,1} = \sup_{x \in [0,1]} |f(x)| + \sup_{x \in [0,1]} |f'(x)|$ and also consider

 $(\mathbf{Y}, \|\cdot\|_{\infty}), \text{ where } \mathbf{Y} = \mathcal{C}[0, 1].$ 3-4-1. Show that $T = \frac{d}{dx} : \mathbf{X} \to \mathbf{Y}$ is a bounded linear operator. [7] 3-4-2. Show that $T = \frac{d}{dx} : D(T) \subsetneq \mathbf{Y} \to \mathbf{Y}$ is an unbounded linear operator, where $D(T) = \mathcal{C}^{1}[0, 1].$ [10] (Wint: where $\mathbf{Y}_{1} = \operatorname{cin}(n\pi\pi)$) (Hint: use $u_n(x) = \sin(n\pi x)$).

God bless you !!!

[5]

[6]

[7]

[3]

[9]

[5]

[3]